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Abstract  

A systematic study has been conducted on the effect different factors including relative 
acidity, number of components and added noise on the simultaneous determination of weak 
acids by multivariate pH-metric titration. For this purpose, partial least squares (PLS) 
regression was applied on the simulated pH-metric titration data. Large numbers of acid 
mixture systems composed of different number of acids with varying acidity strengths were 
examined. The effect of added noise on the prediction ability of the PLS regression was also 
studied.  
 
Key words: pH-metry, simultaneous determination, weak acids, relative acidity, 
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Introduction  

Simultaneous determination of several analytes in a given sample is now an 

interesting area in chemometrics.1-3 Multivariate calibration methods that are the basis of 

such determinations are applied to the second-order data. These data are taken from 

those instruments which generate a vector of signals per sample (e.g., 

spectrophotometric and voltammetric data).4 Data taken from the potentiometric 

methods, which are first order (i.e., one signal per sample), can be converted to the 

second order one by a titration procedure. Application of multivariate calibration 

methods to the potentiometric titration data was introduced by Lindberg and Kowalski in 

1988 for simultaneous determination of weak acids by using PLS regression.5 They used 

the volume of titrant needed to reach a pre-selected pH as the response data and assumed 

a linear relationship between the added titrant volumes and analyte’s concentration. 

After that, this PLS regression method has been applied to acid-base,6,7 complexometric8 



Acta Chim. Slov. 2004, 51, 137−150. 

M. Shamsipur, B. Hemateenejad, M. Akhond: A Study of the Influence of Relative Acidity, Number of… 

138

and potentiometric precipitation titrations.9 Previously, we used the artificial neural 

network calibration method for pH-metric acid-base titration of  four organic acids.10 

The results of multivariate calibration methods is affected by many factors. The 

accuracy of these methods is influenced by the selectivity of the analyte’s signals.11 As 

suggested by Lorber, selectivity in multivariate calibration methods is controlled by 

orthogonality between the component signals (i.e., the degree of overlapping between 

component spectra in spectrophotometric methods).11  

Despite a large achievement in the field of multivariate potentiometric 

determination of several analytes, to the best of our knowledge, there is no literature 

report on the effects of different variables on the performance of these methods. In the 

present study, we have investigated the influence of number of components, relative 

acidity and added noise on such determinations. The systems used were different 

mixtures of weak acids with varying acidity and different number of acids. All the 

systems used were hypothetical and simulated pH-metric data were used. 

 

Methods 

Acids mixture systems.  

For simplicity, we supposed that all the acids used are monoprotic. The system of 

acids used was categorized based on the number of acids in each system. Each system 

was divided to some subsystems based on the acidity strengths of the acids used in each 

system. These systems are indicated in Tables 1-3. The acidity constants of the 

hypothetical monoprotic acids are given in these tables. The subsystems where named as 

 
Table 1. The acidity constants (pKa) of the acids used in two-component systems. 

Acid pKa 

  sys21 sys22 sys23 sys24 Sys25 sys26 sys27 sys28 

acid 1 2.0 2.0 2.0 2.0 4.0 6.0 6.0 8.0 

acid 2 3.0 2.7 2.3 3.5 5.0 6.7 7.0 8.3 

 
Table 2. The acidity constants (pKa) of the acids used in three-components system. 

Acid pKa 

  sys31 sys32 sys33 sys34 sys35 sys36 sys37 sys38 

acid 1 2.0 2.0 3.0 3.0 5.0 5.0 5.0 5.0 

acid 2 2.7 3.0 4.0 4.7 6.0 5.7 5.3 6.7 

acid 3 3.4 4.0 5.0 6.4 7.0 6.4 5.7 8.4 
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Table 3. The acidity constants (pKa) of the acids used in four-component systems. 

Acid pKa 

  Sys41 sys42 sys43 Sys44 sys45 Sys46 sys47 sys48 

acid 1 2.0 2.0 2.0 2 4.0 4.0 4.0 6.0 

acid 2 2.3 2.7 3.0 3.7 5.3 4.7 5.0 7.0 

acid 3 2.7 3.4 4.0 5.4 6.7 5.4 6.0 8.0 

acid 4 3.0 4.2 5.0 7.2 8.0 6.2 7.0 9.0 

 

sysij, where i represent the number of components in the main system and j is the 

subsystem's number indicated in Tables 1-3.  

 

Derivation of the simulated data.  

Consider the titration of V ml of n weak acids (HAi) with a strong base (BOH). 

The analytical concentrations of these acids are assumed as Cai. The charge balance 

equation in all steps of titration is: 

[B+] + [H+] = [OH-] + Σ [A-]i                              (1) 

The equilibrium concentration of A- can be expressed by the following equations:  

[A-]i = αi Cai                                                       (2) 

αi = Ka/([H
+] + Ka) (3)   

where αi is the fraction of acid HAi existed as −
iA . The value of αi, which can be 

evaluated by Equation (2), is only depend on the pH of solution and is calculated for 

each acid separately. By expressing of the concentration of B+ as a function of the 

concentration (Cb) and volume of base added (Vb), the Equation (1) can be written as: 

Cb Vb / V = [OH-] – [H+] + Σαi Cai                                (4) 

From Equation (4), the volume of titrant needed to reach a given pH is calculated by the 

following equation: 

Vb = ([OH-] – [H+] + Σαi Cai) V / Cb                              (5) 

 

PLS modeling.  

PLS regression was run on each system described below (sysij). For each case, two 

sets of standard solutions were considered. The calibration set solutions (25 solutions) 
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were prepared according to five level (1.0, 2.5, 5.0, 7.5 and 10.0 mM) fractional factorial 

design as shown in Table 4.12,13  Using such a design, maximum information for each 

acid can be obtained by using only a few number of standard solutions. In order to 

evaluate the performance of the PLS model on the systems used, 20 standard solutions 

were considered in the prediction set whose concentrations were selected randomly. The 

concentrations of the prediction samples are also shown in Table 4. The concentrations 

of all samples are in the milimolar range.  Based on the number of components used, 

different columns of the Table 4 were considered, i.e., the first two columns of this table 

were used for the two components system, the first three columns for three components 

system and so on.  

For each standard solution, the volume of titrant as the function of pH (in a 0.1 pH 

interval) was derived by using Equation (5). The starting pH value used was based on the 

initial pH of the standard solution, which had the highest value. The PLS regression was 

run on the calibration data set and the extracted data from this step were used to predict 

the concentration of acids in the prediction samples. Prediction residual error sum of 

squares (PRESS) was calculated from these data and the number of latent variables was 

selected based on Fisher's F-test.2 Percent relative standard error (RSE)14 for the 

prediction set and the correlation coefficient for prediction sets were calculated and used 

to evaluate the effect of variables defined previously on the prediction ability of the PLS 

model.  

 

Results and discussion 

In potentiometric titration methods, the selectivity arises from the difference 

between the shape of the titration curve and this is due to the difference in acidity 

constant of the components being titrated. Principally, if the difference between the pKa 

of two acids is 3 or higher, distinct end points are observed. However, multivariate 

calibration methods can predict the end point of titration even if the ∆pKa is lower than 

three.   

It is reported that the concentration range in the calibration set and the type of 

mixture design also influence the results of multivariate calibration methods.14 In order 

to neglect the effect of these variables, we used the same concentration matrix for all the 

systems studied. The concentrations are in the milimolar range. The compositions of 
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calibration set mixtures were designed by five-level fractional factorial design12,13 and 

the concentrations of prediction set standards were selected randomly. The concentration 

of aids used in the prediction set is shown in Table 4. 

 
Table 4. Concentration of acids used in this study for the calibration and prediction sets. 

Calibration set Concentrations (mM) Prediction set Concentrations (mM) Sample no. 

acid 1 acid 2 acid 3 acid 4 acid 1 acid 2 acid 3 acid 4 

1 5.0 5.0 5.0 5.0 9.5 0.6 8.4 5.0 

2 5.0 1.0 2.5 1.0 2.3 3.5 0.2 9.0 

3 1.0 2.5 1.0 10.0 6.1 8.1 6.8 8.2 

4 2.5 1.0 10.0 10.0 4.8 0.1 3.8 6.4 

5 1.0 10.0 10.0 5.0 8.9 1.4 8.3 8.2 

6 1.0 1.0 5.0 2.5 7.6 2.0 5.0 6.6 

7 1.0 5.0 2.5 10.0 4.6 2.0 7.1  3.4 

8 5.0 2.5 10.0 2.5 0.2 6.0 4.3 2.9 

9 2.5 10.0 2.5 7.5 8.2 2.7 3.0 3.4 

10 10.0 2.5 7.5 7.5 4.5 2.0 1.9 5.3 

11 2.5 7.5 7.5 5.0 6.1 0.2 1.9 7.3 

12 7.5 7.5 5.0 10.0 7.9 7.5 6.8 3.1 

13 7.5 5.0 10.0 7.5 9.2 4.4 3.0 8.4 

14 5.0 10.0 7.5 10.0 7.4 9.3 5.4 5.7 

15 10.0 7.5 10.0 1.0 1.8 4.7 1.5 3.7 

16 7.5 10.0 1.0 1.0 4.1 4.2 7.0 7.0 

17 10.0 1.0 1.0 5.0 9.3 8.5 3.8 5.5 

18 1.0 1.0 5.0 7.5 9.2 5.2 8.6 4.4 

19 1.0 5.0 7.5 1.0 4.1 2.0 8.5 6.9 

20 5.0 7.5 10.0 7.5 8.9 6.7 5.9 6.2 

21 7.5 1.0 7.5 2.5     

22 1.0 7.5 2.5 2.5     

23 7.5 1.0 2.5 5.0     

24 2.5 1.0 5.0 1.0     

25 2.5 5.0 1.0 2.5     

 

The results of application of PLS regression method on the pH-metric titration data 

of all the systems indicated in Tables 1-3 are summarized in Tables 5-7, respectively. 

The statistical values given in these Tables are the mean values over the number of acid 

components used in each Table (i.e., 2 acids in Table 5, 3 acids in Table 6 and 4 acids in 

Table 7).  It must be noted that in almost all of the studied systems, the number of latent 

variables used in PLS modeling were greater than the number of components, and in the 

presence of added noise to the simulated data this number was increased. This means 
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that the PLS method used more latent variables to extract useful information from the 

noisy data.  

 
Table 5. The results of PLS regression for two-component systems. 

System Noise 
(%) 

f RSE  

(%) 

r2 System Noise 
(%) 

f RSE (%) r2 

0 3 0.25 1.0000 sys25 0 3 1.60 0.9998 

1 4 1.84 0.9997  1 3 3.35 0.9992 

Sys21 

3 5 6.52 0.9982  3 4 6.69 0.9984 

0 3 0.36 1.0000 sys26 0 3 0.58 0.9999 

1 4 2.54 0.9991  1 4 2.37 0.9991 

Sys22 

3 6 8.52 0.9910  3 5 7.44 0.9982 

0 2 1.30 0.9994 sys27 0 3 0.91 0.9998 

1 3 3.04 0.9936  1 3 1.92 0.9991 

Sys23 

3 4 9.91 0.9910  3 4 4.22 0.9938 

0 3 0.59 0.9999 sys28 0 3 0.23 1.0000 

1 5 2.19 0.9984  1 5 3.24 0.9984 

Sys24 

3 6 5.48 0.9921  3 7 10.3 0.9826 

 
Table 6. The results of PLS regression for three component system. 

System Noise 
(%) 

f RSE 
(%) 

r2 System Noise 
(%) 

f RSE (%) r2 

0 5 0.49 0.9999 sys35 0 5 0.11 1.0000 

1 6 6.32 0.9962  1 5 0.77 0.9999 

Sys31 

3 7 10.2 0.9811  3 7 4.41 0.9994 

0 4 0.56 0.9999 sys36 0 4 0.57 0.9999 

1 5 3.27 0.9991  1 5 3.92 0.9978 

Sys32 

3 5 7.61 0.9916  3 7 8.65 0.9891 

0 4 0.17 1.0000 sys37 0 4 0.85 0.9996 

1 4 1.69 0.9998  1 6 10.5 0.9532 

Sys33 

3 6 5.61 0.9976  3 7 17.3 0.9024 

0 5 0.18 1.0000 sys38 0 5 0.14 1.0000 

1 5 0.52 0.9999  1 5 0.64 0.9999 

Sys34 

3 6 2.57 0.9987  3 5 1.74 0.9992 

 

 

Two-component systems 

Effect of relative acidity.  

Table 1 represents the acidity constants (pKa) of the acids employed and the 

corresponding results of PLS regression are given in Table 5. In systems sys21 and sys24, 
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the pKa of one acid is 2.0 and those of the second one varied between 2.3-3.5. Figure 1a 

shows the plot of RSE against the difference in pKa of the two acids studied (∆pKa). The 

error decreases when the ∆pKa increases from 0.3 to 1.0. Meanwhile, further increase in 

∆pKa (upto 1.5) causes no significant improvement in the results.  

 

 
Table 7. The result of PLS regression for four components system. 

System Noise 
(%) 

F RSE (%) r2 System Noise 
(%) 

f RSE (%) r2 

0 6 1.20 0.9998 sys45 0 6 0.28 1.0000 Sys41 

1 7 10.8 0.9768  1 7 3.84 0.9991 

0 7 1.20 0.9995  3 8 8.69 0.9872 Sys42 

1 8 5.42 0.9946 sys46 0 5 0.93 0.9999 

0 6 0.31 1.0000  1 5 3.41 0.9973 

1 7 0.82 0.9997  3 6 6.80 0.9904 

Sys43 

3 7 3.46 0.9991 sys47 0 6 0.32 1.0000 

0 5 0.50 1.0000  1 6 2.21 0.9991 

1 5 0.73 0.9998  3 7 6.90 0.9872 

Sys44 

3 6 4.48 0.9984 sys48 0 6 0.25 1.0000 

     1 6 2.65 0.9991  

     3 7 5.61 0.9877 
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Figure 1. Variation of RSE vs. ∆pKa (a) and total acidity (b) for acids employed in two component 
systems using noise free data and data in the presence of one and three percent added noise. 
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Figure 2. Theoretical curves for titration of 25 ml of 0.005 M individual 
acids with pKas indicated in sys21 (a) and sys25 (b) with a 0.5 M solution of a 
strong base. 

 

The total acidity of the components (i.e. pKa1+pKa2) was also found to influence 

the results of PLS method. The results are shown In Figure 1b.  Here, the RSE is plotted 

vs. the total acidity when ∆pKa is fixed at 1.0. As is obvious, the RSE decreases when 

the acids studied become weaker. This is due to the dependence of the shape of titration 

curve on the acidity strength of the acids. The shape of titration curves of two weak acids 

is more different from those of two strong acids. For example, the titration curves for the 

acids sys21 and sys25 in Table 1 are shown in Figures 2a and 2b, respectively. The 

difference in the shape of titration curves, especially at the beginning of the titration, for 

weaker acids causes the orthogonality between the signals of analytes to be increased 

and, therefore, the RSE becomes lower when the acids are weaker. The effect of total 
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acidity on the RSE is influenced by the ∆pKa of the acids used. It was found that the 

influence of total acidity RSE is larger when the ∆pKa is smaller. 

 

Effect of noise.  

The effect of added root mean square noise (at 1 and 3 percent) on the resulting 

RSE values was investigated. Figure 1a shows the variation of RSE vs. ∆pKa in the 

presence of noise. When the difference between the acidity of components increased, the 

effect of noise on the RSE is lowered. A 1% noise does not influence the model 

performance significantly when ∆pKa is between 0.3-1.5. However, in the presence of 

3% noise, the RSE becomes greater significantly when ∆pKa is 0.7 or lower, while 

relatively better results is obtained at ∆pKa > 1. 

The effect of noise on the plots of RSE vs. acidity are shown in Figure 2b. As is 

obvious, the effect of noise becomes more significant when total acidity decreased. This 

observation my also be related to the lesser selectivity when acids become stronger. 

 

Three-component systems 

Effect of relative acidity.  

Table 2 represents the acidity constant (pKa) of the acids used in three-component 

systems and the corresponding results of PLS regression are summarized in Table 6. 

Figure 3a are shown the variation of RSE vs. ∆pKa for the systems sys32 and sys35 in 

which the acidity of the strongest acid (i.e., acid) is 2 and 5, respectively. As expected, 

the RSE decreases by increasing the ∆pKa. Moreover, the errors are lower when the 

acidity of the strongest acid is 5 rather than 2. The prediction ability of the model for the 

acid number two (the acid with mildest acidity in each system) is lower than others 

especially, at smaller ∆pKa values. In the case of weaker acids system, when ∆pKa value 

is 1.0 or greater the results of PLS modeling for all acids are going to be close to each 

other.  

The effect of total acidity on the prediction ability of the PLS on the three-

component system is represented in Figure 3b. For all the acids, the errors become 

smaller when the total acidity decreased. This behavior is more considerable for acid 

number 2 (the acid with mildest acidity). It should be noted that this acid is titrated after 

the stronger acid (acid 1) and before the weaker ones (acid 3). Thus, its titration curve 
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overlapped with those of the two other acids and this fact lowers the selectivity of the 

signal of this acid. However, if the acids used in a three component system are weak, the 

orthogonality between their titration curves increases and more selective signals are 

obtained.  
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Figure 3. (a) Variation of RSE against ∆pKa for acids 1 and 2 of the three component systems when the 
pKa of the strongest acid is 2 (solid markers) and 5 (open markers). (b) Variation of RSE against total 
acidity when ∆pKa is 1. 

 

Effect of noise.  

The influence of noise in the systems three component found to be stronger than 

that of the two-component systems. The plots of variation of RSE against the added 

noise for different cases are plotted in Figure 4. In this figure, only the results for acids 

number one and two are plotted. The result for the third one is relatively the same as acid 

number one. Figure 4a shows the results when the systems studied contain stronger acids 

(i.e., pKa of the strongest acid is 2.0) while Figure 4b is representative for the systems 

containing weaker acids (i.e., pKa of the strongest acid is 5).  For the systems shown in 

Figure 4a, the prediction errors become very large in the presence of noise when ∆pKa is 

0.3 and, thus, the results are not included in this Figure. Increasing the ∆pKa to 0.7 and 

1.0 causes the error for acid number one to decrease to an acceptable value in the 

presence of 1% noise. However, the resulted error for acid number two is still high. 

Meanwhile, no good results obtained in the presence of 3% noise for both acids. 

However, when ∆pKa increases to 1.7, an excellent result for acid one and a good result 

for acid two are obtained in the presence of 1% noise, and even in the presence of 3% 

noise, a very good result is obtained for acid number one and the result for acid number 

2 is acceptable. 

a b 
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Figure 4. Plots of RSE vs. added noise for acids 1 and 2 of three component systems for cases where total 
acidity is high (i.e., pKa of the strongest acid is 2) (a) and total acidity is low (i.e., pKa of the strongest acid 
is 5) (b). 

 

Figure 4b show the results when the systems studied contain weak acids (i.e., pKa 

of strongest acid is 5.0). The errors obtained in this case are lower than that found for the 

systems discussed in the previous paragraph. As seen, the RSE is too high in the 

presence of noise when ∆pKa is 0.3 while except the RES for acid number one is 

acceptable when noise is 1%. However, increasing ∆pKa to 0.7, causes a good result for 

acid number one and an acceptable result for acid number two in the presence of 1% 

noise, while an acceptable result is obtained for acid number one if 3% noise is added to 

the data. If the difference between acidity constants increases to 1.0, very good results 

are obtained for both acids in the presence of 1% noise. Meanwhile, the results obtained 

in the presence of 3% noise is good for acid number one and acceptable for acid number 

two. Finally, The ∆pKa of 1.7 is sufficient enough to give excellent results in the 

presence of 1% noise and very good results when noise is 3%. Thus, it can be concluded 

that the three acids can be determined simultaneously by application of PLS using the 

pH-metric titration data, if the difference between the acidity of components are at least 

1.7, even if 3% noise is present in the experimental data. 

 

Four-component systems 

Effect of relative acidity.  

Table 3 represents the acidity constant (pKa) of the acids used in four-component 

systems and the corresponding results of PLS regression are given in Table 7. Since the 

a b
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systems become complicated when the number of components is four, higher prediction 

errors are expected for these systems. As shown in Table 7, even for noise-free data the 

resulting RSE are greater than those obtained for two or three components systems and, 

in some cases the RSE is greater than 10%, especially when ∆pKa is small.  

Figure 5a shows the variation of the RSE vs. ∆pKa for the cases in which pKa of 

the strongest acid is 2.0. In most cases, a gradual decrease in RSE is observed with 

increasing  ∆pKa of the system. The errors associated with acids number one and two are 

higher than those of acids number three and four, when ∆pKa is 0.7 or lower. However, 

when ∆pKa increases to 1.0 or greater, the errors due to acids two and three become 

greater than those for acids 1 and 4. These variations are shown in Figure 6. Acids 

number one and two are stronger than two other acids and, thus, their titration curves are 

more similar to each other specially when the difference between their acidity is low. 

Hence, higher prediction errors are expected for these acids at small ∆pKa values.  At 

high ∆pKa values, similarity between the titration curves decreased and, hence, the 

degree of overlapping between titration curves becomes important. Thus, the errors due 

acids number two and three which their titration curves overlap with each other and with 

those of acid number one and four receptively, predicted less accurately. 
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Figure 5. Variation of RSE vs. ∆pKa for the acids of four component systems 
for noise free data (a) and in the presence of 1% added noise (b). 
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Effect of noise.  

Because of the complexity of the data in the case of four components systems, the 

noise has considerable effects on the results of PLS regression for such systems. For 

some of the systems indicated in Table 3, the concentration of acids could not be 

predicted in the presence of 3% noise (Table 7). Only for sys44 and sys45, with ∆pKa 

values of 1.7, good results are obtained in the presence of 3% noise.  
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Figure 6. Plots of RSE against acid number for quaternary 
mixtures when ∆pKa is 1 and pKa of the strongest acid is 2. 

 

While in cases the sys43, sys47 and sys48, which ∆pKa values of 1.0, only for acids 

number one and four good results are obtained in the presence of 3% noise. The 

variations of RSE against ∆pKa in the presence of 1% noise are shown in Figure 5b. As 

expected, the RSE decreases by increasing ∆pKa. The errors due to acids number two 

and three are greater than those of acids number one and four, in all cases. Meanwhile, 

by increasing the ∆pKa, the errors of acids are going to be close to each other. Thus, it 

can be concluded that when ∆pKa is 1.7 or greater, the concentration of acids in 

quaternary mixtures can be predicted with good accuracy in the presence of 3% noise 

and, of course, better results are obtained when the noise become 1%. 

 

Conclusions 

A systematic study has been conducted on the influences of factors that affect the 

prediction ability of the PLS method applied to the pH-metric titration of mixtures of 

weak acids by a strong base. The results indicated that, by using the noise-free data, the 

prediction of the concentration of acids can be done accurately even if the difference 
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between the acidity constants of the acids being titrated is 0.3. While, by increasing the 

number of unknown components in the titration mixtures, the error becomes higher.  It 

was found that the total acidity of the acid mixtures (i.e., sum of acidity constants of 

acids) rather than their relative acidity is another factor that controls the prediction 

ability of the model. If the acids being titrated become weaker, the resulted errors will 

decrease. Incorporation of noise into the simulated data caused a decreased performance 

of the model. In the presence of noise, a high value of ∆pKa is required.  For two-

component mixtures, the 1% noise did not show a significant effect on the results, and 

3% noise destroyed the model performance when ∆pKa was 0.7 or lower. Simultaneous 

determination of acids in ternary and quaternary mixtures in the presence of 3% noise is 

achievable only if ∆pKa is 1.7 or larger.  
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Povzetek 

Opravili smo sistematično raziskavo vplivov različnih dejavnikov, kot so relativna kislost, 
število sestavin ter dodani šum, na hkratno določitev vsebnoti šibkih kislin z multivariantno 
pH-metrično titracijo. V ta namen smo za interpretacijo simuliranih titrimetričnih podatkov 
uporabili regresijsko metodo delnih najmanjših kvadratov (PLS). Raziskali smo veliko 
število različnih mešanic kislin. Opredelili smo vpliv dodanega šuma na napovedne 
zmožnosti PLS regresije.  
 


