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The structural and thermodynamic properties of a model electrolyte solution confined in disordered matrices 
with charged obstacles were studied by means of the grand canonical Monte Carlo simulation. A disordered 
nanoporous medium was modelled as i) an equilibrium distribution of ions in a +1:-1 primitive model electrolyte;  
ii) a system of dipolar hard spheres; iii) a collection of chainlike molecules with alternating charge on the beads 
(polyampholyte); and iv) as a system of charged chainlike molecules (oligoelectrolyte) with the pertaining 
counterions. The confined electrolyte was assumed to be in thermodynamic equilibrium with the obstacles forming 
the nanoporous matrix and an external electrolyte of the same chemical composition. The solvent in all these 
cases was treated as a dielectric continuum. In the present study we were interested in effects of the distribu-
tion of charged obstacles on the mean activity coefficient of the confined electrolyte. The computer simulations 
were performed for a set of values of the model parameters such as the concentration of matrix ions and of the 
annealed electrolyte, pre-quenching conditions and the conditions of observation. The results confirmed our 
previous findings that the properties of an annealed electrolyte depend strongly on the conditions of observation 
(temperature and dielectric constant of solvent), as well as on the concentrations of all components. The effect 
of the matrix-charge distribution, investigated in this work, was found to be significant and more important for 
higher Coulomb couplings. 
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1. Introduction 

Understanding mechanisms governing electrolyte 
distribution between bulk solutions and nanoporous 
materials is of substantial interest for science as well 
as for technology. The latter interest stems from 
implications for separation and purification processes, 
heterogeneous catalysis, chemical sensing, and related 
areas (see, for example, ref. 1, 2, 3). In recent years such 
systems became the subject of numerous theoretical 
studies; particular attention has been paid to adsorbents 
containing charges, acknowledging the role that the 
Coulomb interaction plays in separation processes. 

The system of interest is heterogeneous on a 
molecular scale. One component (obstacles) is fixed 
in space (quenched component) and represents the 
nanoporous material, while the other component is fully 
mobile and thermally equilibrated within the matrix 
(annealed component). Such systems differ from regular 
two component mixtures; the statistical-mechanical 
average that is needed to obtain the thermodynamic 
properties of a confined fluid becomes a double 
ensemble average. First, at a given configuration of the 

matrix, the usual averaging over the annealed degrees 
of freedom takes place, while the second average is 
performed for all the possible values of the quenched 
variables.

A decade ago we began a systematic investigation 
of partly-quenched ionic systems addressing the problem 
of screening of Coulombic forces by charged obstacles.4-

11 In these papers the replica Ornstein–Zernike (ROZ) 
theory, developed by Madden, Glandt, Given, Stell 
and several others12-18

 
was generalized to study the 

adsorption of a model ionic fluid in a disordered 
medium with ionic and neutral obstacles (for a review, 
see ref. 19, 20). In addition to the replica theory, the 
grand canonical Monte Carlo method was utilized to 
examine the distribution of fluid between the porous 
and bulk phases.8,9,21-24 

Computer simulations are perhaps the most 
useful tool in studying adsorption phenomena. The 
open ensemble Monte Carlo method is particularly well 
suited for this purpose for it unambiguously defines the 
equilibrium bulk phase. This approach, pioneered by 
Valleau and coworkers,25,26

 
has been successfully applied 

to partly-quenched systems.8-11 In several previous 
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contributions from our group8-11 we studied electrolyte 
rejection from a charged matrix modelled by one 
possible equilibrium distribution of ions in the primitive 
model +1:-1 electrolyte. The matrix was assumed to 
be formed as follows: at a certain temperature T0 the 
electrolyte solution was subjected to a rapid quench. 
In addition, it was assumed that the spatial distribution 
of matrix ions (obstacles) did not change during the 
quench, and was therefore completely determined 
by the pre-quenching conditions given by T0 and the 
dielectric constant of the solvent (ε) at that temperature. 
Within such a quenched electroneutral system of 
ionic obstacles, another electrolyte was distributed 
and allowed to thermally equilibrate at conditions 
(temperature, dielectric constant) that may have been 
different from those given by T0 and ε. Using computer 
simulations and the replica Ornstein–Zernike theory 
we were able to determine adsorption isotherms under 
a broad range of laboratory conditions. Note that the 
porous phase was always modelled as an electroneutral 
subsystem; in such situations the rejection of electrolyte 
is expected, and an unequal distribution of the fixed 
positive and negative charges in the matrix may be the 
only cause of the electrolyte intake. 

In the studies presented so far8-11 little attention 
has been paid to the modelling of the matrix phase. 
It seems reasonable to assume, however, that the 
spatial distribution of charged obstacles, in addition to 
other parameters, strongly influences the equilibrium 
distribution of electrolyte between the two phases. In 
the present study we utilized the computer simulation 
technique to make quantitative predictions about 
this effect. We used the grand canonical Monte 
Carlo method to examine the distribution of a charge 
symmetric +1:-1 electrolyte between the nanoporous 
phase containing an electroneutral distribution of 
ionic obstacles and bulk electrolyte solution. The 
parameters for the bulk electrolyte were chosen to 
mimic solutions of lithium chloride (LiCl) in solvents 
of various dielectric constant. We examined several 
different types of obstacle distribution, here called the 
matrix. In all the cases studied here these matrices were 
electroneutral. In one of the examples, the adsorbent 
was represented as a collection of fused charged hard 
spheres mimicking a dipolar fluid. In another case the 
matrix was modelled by an equilibrium distribution of 
chain-like oligomers modelling polyampholytes. In this 
example each oligomer with the number of monomer 
units N = 16 (or N = 32) was electroneutral having 
an equal number of negatively and positively charged 
beads. 

In yet another variant studied here, the matrix was 
assumed to be prepared from an equilibrium solution of 
charged oligomers (all the beads of the oligomer carrying 
a unit positive charge) with the respective counterions 

being distributed in solution. Both counterions and 
oligoions were assumed to be frozen in space, modelling 
a particular equilibrium charge distribution which can 
form in such a system. These results were compared 
with our previous (and new) calculations where the 
matrix material was represented as an electroneutral 
set of quenched charged hard spheres mimicking 
an equilibrium distribution of ions in the electrolyte 
solution. In summary, the purpose of this study was not 
to model a particular adsorbing material but rather to 
examine the effects caused by various distributions of 
charged obstacles. 

2. Model system 

Our model system consists of two subsystems: 
the first is a quenched fluid with charged obstacles, 
which we call the matrix, while the second is a mobile 
(annealed) electrolyte solution. The latter equilibrates 
in the presence of matrix species. The annealed fluid is 
in thermodynamic equilibrium with an external (bulk) 
electrolyte of the same chemical composition. It is 
important to stress that within this model the matrix 
does not respond to the presence of the annealed fluid; 
this is how our system differs from regular mixtures. 
The notation used throughout the paper is that indices 
0 and 1 depict matrix and annealed fluid species, 
respectively. 

Figure 1:

24

Figure 1. (a) Dipolar obstacles (fused hard spheres of equal size 
bearing positive and negative charge); (b) chain-like obstacles 
with beads carrying alternating charges (N = 8), and (c) 
chain-like matrix particles with beads carrying positive charge 
neutralized by negative counterions (N = 8).

In the present contribution we study the effects 
of different representations of the matrix subsystem. 
Firstly, i) the matrix is represented by positively and 
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negatively charged hard spheres with charges 0
+ez   and  0

−ez  
( )1,1 00 −== −+ zz , such as to satisfy the electroneutrality 
condition. This is the so-called ”primitive model” 
of an electrolyte solution. Secondly, ii) the particles 
representing the matrix are fused hard spheres with 
positive and negative charges at their centres (see 
Figure 1a). The net charge of such a ”molecule” is zero; 
this is the model of a dipolar fluid. iii) The obstacles 
are chain-like molecules with beads carrying charges 
alternating in sign (polyampholyte), see Fig. 1b. In the 
final example studied here, iv) the obstacles are again 
presented as chain-like molecules, but with all the 
beads carrying charges of the same sign (Fig. 1c). In this 
case an equivalent number of quenched counterions is 
present to ensure the electroneutrality of the matrix 
subsystem. In all the cases treated we assume the matrix 
be formed as follows: at a certain temperature T0 and 
dielectric constant ε, the respective fluid is subjected 
to a rapid quench. The distribution of particles in the 
matrix therefore corresponds to an equilibrium state of 
the fluid of concentration c0 at temperature T0. While 
the matrix subsystem is electroneutral in all the selected 
examples, the distribution of positive and negative 
charges is substantially different. In this study we are 
interested how the unequal distribution of charged 
obstacles affects the adsorbing power of the neutral 
adsorbent. 

In all the examples the size of the matrix particles 
are set equal to A25.400 == −+ σσ Å and the interaction 
pair potential between the matrix particles (beads) is 
defined by:

where i and j assume values + and −. 
The model for the annealed electrolyte is 

the same in all the examples described above. 
It corresponds to an electroneutral system of charged 
hard spheres with charges 1

+ez   and 1
−ez  ( )1,1 11 −== −+ zz  and 

diameters 1
+σ  and 1

−σ . The sizes of the ions are chosen 
to mimic LiCl solution: 43.51 =+ρ  Å and 62.31 =−ρ  Å. The 
number concentration of annealed species is 11

−+ = ρρ , 
and the solvent is modelled as a dielectric continuum 
with constant 1ε . Adsorption in a disordered system 
is studied at conditions T1, 1ε , which normally differ 
from the conditions T0, ε  under which the matrix was 
equilibrated. The fluid fluid ( )rUij

11  and fluid-matrix ( )rUij
10  

pair potentials are defined as:
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Most of the calculations in this paper apply to matrices formed under conditions character-

ized by the Bjerrum length λB,0 = 7.14 Å (λB = e2
0/4π�0�kBT ). The structural and thermody-

namic properties of the annealed electrolyte are examined for λB,1 = 7.14 Å and 14.28 Å at two

different concentrations of matrix particles. The different values of λB,1 used in the calculation

may be ascribed to solvents having different dielectric permittivity �1 at temperature T1.
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In studying adsorption processes it is natural 
to use the open ensemble method. In this method 
the configurational states are sampled at constant 
chemical potential µi and temperature T, while the 
concentration of ions inside the porous phase fluctuates. 
The simulation consists of two steps, the first one is 
canonical - the number of ions is fixed and a randomly 
chosen ion is moved into a new random position in the 
simulation cell. The attempted move is accepted with 
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−
) in eq. 6 is related to the excess chemical potential (µex =

µ − µideal) of the bulk electrolyte with number concentration of cations ρ+ and anions ρ− and

needs to be known in advance.

The computer simulation of this system involves in principle a double average. The first is

the usual configurational averaging over the annealed degrees of freedom for a selected (equilib-

rium) distribution of obstacles. Next, it is necessary to perform averaging over the all possible
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and anions ρ– and needs to be known in advance. 



295Acta Chim. Slov. 2006, 53, 292–305

Lukšič et al.   Modelling Electrolyte Adsorption in Nanoporous Materials

4. Results 

4.1 Numerical details 
Before presenting the results we wish to discuss some 

details of the Monte Carlo calculations. The first step was 
always the simulation of the matrix. In the first example  
i) the matrix was the +1:-1 electrolyte considered 
in the primitive model approximation. We applied 
the canonical Monte Carlo method to simulate an 
electroneutral system of equally-sized charged hard 
spheres (modelling a size symmetric +1:-1 electrolyte) 
at concentrations of c0=0.5 mol/L (and 1.0 mol/L), 
and for λB,0=7.14 Å. This value of λB,0 corresponds to 
aqueous solutions at 298 K. The number of particles 
(sum of cations and anions) used in this calculation 
was 1000. The distribution of ions in the adsorbent was 
one of the possible equilibrium distributions (it was 
essentially the final one, taken after 10 × 106 attempted 
configurations) of the ions in the electrolyte solution 
formed under conditions T0 and ε.

In the second example ii) the matrix was 
represented as a system of dipolar molecules (Fig. 1a), 
modelled as two fused hard spheres carrying positive 
and negative charges at their centres. The number of 
dipoles used in the simulation was in all cases equal 
to 500 and the machine calculations were performed 
for the monomer concentrations c0=0.5 mol/L (and  
1.0 mol/L), and for two values of the parameter λB,0 
(λB,0=7.14 Å and 14.28 Å).

In examples iii) and iv) 512 cations and 512 
anions were arranged so as to form chainlike structures 
containing N=16 or N=32 monomeric units per chain. In 
example iii) the charges on monomer units in the chain 
alternated, while in case iv) all the beads on the chain 
carried positive charge. The anions (counterions) - their 

number was equal to the number of beads (monomer 
units) to satisfy the electroneutrality condition - were 
in the latter case distributed in the solution. Conditions 
of preparation corresponded to λB,0=7.14 Å and c0=0.5 
mol/L and 1.0 mol/L; in case iv) only to c0=1.0 mol/L. 
For iii) the simulation cell contained 32 chains with 
N=32 and 64 chains for N=16. On the other hand, 
in example iv) we treated simultaneously 16 oligomer 
chains with degree of polymerization N=32 and 512 
related counterions in the basic Monte Carlo cell. 
In both cases, as also for ii) above, c0 denotes the 
concentration of monomer units (beads) composing 
the oligomer (or a dipole). 

In the examples ii-iv) the MOLSYM31 computer 
program was used to generate the equilibrium 
distributions. In each of these studies we needed around 
(20−50) × 103 passes (trial moves per particle) to 
equilibrate the Monte Carlo system. The simulations 
of charged oligomers with N=16 and N=32 were more 
demanding in this respect (50 × 103 passes). We used 
three types of moves for the chains in the simulation 
box. Chains were ”moved” by using a) translation, where 
the whole chain was translated by a particular random 
vector, b) rotation of the shorter end of the chain, and 
c) bend stretching. 

In the next step, the grand canonical Monte 
Carlo simulation was used to study the distribution 
of simple electrolyte between the bulk fluid and the 
matrix subsystem. The number of ions mimicking LiCl 
distributed within the matrix varied from ~ 60 at low 
to ~ 2000 at high concentrations. The annealed ions 
were first equilibrated over (1−3) × 106 states. After 
the equilibrium run, the production run of (6−50) × 
107 attempted configurations was carried out to obtain 
canonical averages. 

4.2 Characterization of the matrix 
As already mentioned, the matrix was represented 

by an equilibrium distribution of obstacles obtained 
by a sudden quench at T0 and ε. The diameters of the 
individual (matrix) ions or beads were 25.400 == −+ σσ  Å 
in all the examples studied here. In the first case, i) the 
matrix  was represented by a restrictive primitive model 
+1:-1 electrolyte at concentrations c0=0.5 and 1.0  mol/
L (λB,0=7.14 Å ). The distribution of charged obstacles 
could be characterized by the relevant pair distribution 
functions (PDFS), )/(00 σrgij , which for a solution with 
concentration c0=1.0 mol/L are shown in Figure 2. 

In ii) we picture the obstacles as fused hard spheres 
with positive and negative charges at their centres (see 
Figure 1a). The +,+ and +,− pair distribution functions 
for the concentration of monomers equal to c0=1.0 
mol/L and for λB,0=7.14 Å are shown in Figure 3. As 
seen from this figure, the solution exhibited very little 
structure beyond the first peak for this concentration. 

The computer simulation of this system involves 
in principle a double average. The first is the usual 
configurational averaging over the annealed degrees 
of freedom for a selected (equilibrium) distribution of 
obstacles. Next, it is necessary to perform averaging 
over the all possible distributions of matrix particles. In 
practice it turned out21-24,28-30 that only a small number 
of equilibrium matrix realizations is sufficient (see also, 
ref. 8-11) to obtain valid averages. We can ascribe this 
finding to the fact that for a sufficiently large matrix 
subsystem, the annealed particle visits all portions of the 
phase space relevant for the statistical average.22,28

To avoid effects due to the finite number of 
particles included in a simulation cell, the minimum 
image boundary conditions are used. We found in 
previous simulations, carried out at high couplings, 
that minimum image boundary conditions are perfectly 
acceptable under these conditions.11
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For the chain-like molecules (N=32 in our case) 
it is also important to have some information about 
the global shape of the quenched matrix molecule. 
This information was provided from calculation of the 
end-to-end distances and radii of gyration during the 
Monte Carlo simulation of the matrix subsystem. For 
iii), where the beads on the electroneutral chain-like 
molecule carry alternating positive and negative charges 
(see Fig. 1b), the end-to-end distance 2/12 �� EER  was 
39.16 Å for c0=0.5 mol/L and 38.36 Å for 1.0 mol/L 
solution. The corresponding values of the radius of 
gyration 2/12 �� GR  were 15.44 Å and 15.19 Å. The PDFS 
for the unlike charge (empty symbols; value at contact 
distance is not shovn and extends over 45.6) and like-
charge beads (full symbols) of the polyampholyte matrix 
(c0=1 mol/L, λB,0=7.14 Å and N=32) are shown on 
Figure 4. As for the case ii) little correlation between 
the beads of the chains is seen after the second peak 
for this conditions. 
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Figure 2. The ion-ion distribution functions )/(00 σrgij  for the 
matrix formed from a +1:-1 primitive model electrolyte (case i). 
Empty symbols show PDF for unlike ions, full symbols present 
like-ion PDF. c0 = 1.0 mol/L and λB,0= 7.14Å. 
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Figure 3. The +,+ and +,− charge distribution functions 
)/(00 σrgij  for the matrix formed from dipolar obstacles (case 

ii). Empty symbols show the PDF for unlike charge beads, full 
symbols present like-charge PDF at concentration of monomers  
c0= 1.0 mol/L and for λB,0=7.14 Å. 
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Figure 4. The +,+ and +,− charge distribution functions  )/(00 σrgij  
for the matrix formed from polyampholyte chains (case iii). 
Empty symbols show results for unlike charge PDF (value at 
contact distance extends over 45.6), full symbols present like-
ion PDF. Concentration of monomers c0= 1.0 mol/L and λB,0 
= 7.14 Å. 

In the last example iv), the chain-like molecules 
carry charge of the same sign (Fig. 1c) and the equivalent 
number of monovalent counterions is distributed in the 
matrix subsystem to make it electroneutral. The end-
to-end distances 2/12 �� EER in this case were 56.54 Å for 
c0=0.5 mol/L and 51.95Å for c0=1.0 mol/L solution, 
while 2/12 �� GR values for these two concentrations were 
20.89 Å and 19.68 Å respectively. These data show that 
charged chains iv) are considerably more extended than 
the electroneutral polyampholyte chains iii). Finally, 
in Figure 5 we present the oligoion-counterion and 
counterion-counterion pair distribution functions 
for this case. The graphs (empty symbols) indicate 
a relatively strong association of counterions with 
oligoions as normally found in linear polyelectrolyte 
solutions (see, for example, ref. 32, 33). 

Figure 5. The counterion-counterions (full symbols) and 
oligoion-counterion (empty symbols) pair distribution functions 

)/(00 σrgij   for the matrix formed from charged oligomers and 
respective number of counterions (case iv) at concentration of 
monomers c0= 1.0 mol/L and for λB,0 = 7.14 Å. 
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In general we may classify the model adsorbents 
studied here into two types. The first class is represented 
by dipolar fluid ii) and polyampholyte iii), where the 
individual particles (obstacles) composing the matrix 
are neutral. The second class is constituted by +1:-1 
electrolyte i) and polyelectrolyte solution iv), where 
the obstacles carry some net charge. The separation of 
the positively and negatively charged obstacles, possible 
in the latter two cases, has a decisive influence on the 
adsorption behaviour of the adsorbent. 

4.3 Pair-distribution functions 
We start our discussion with the selected pair 

distribution functions between the annealed ions 
themselves, )/(11 σrgij and for the annealed ion-matrix 
particle (an ion or a bead) correlation pairs, )/(10 σrgij . 
For the annealed electrolyte confined in different 
matrices subscripts i and j denote Li (+) and Cl (−) 
ions. Because of the small difference in the shapes of 
the PDFS for matrices with concentrations c0=0.5 and 
1.0 mol/L, generally only the case for c0=1.0 mol/L is 
shown. Similarly, for matrices formed from chain-like 
molecules the difference in PDFS for N=16 and N=32 
was small, and the majority of the results shown here 
apply to N=32. By the same reasoning, only the results 
where the matrices were prepared under conditions 
given by the Bjerrum length λB,0 = 7.14 Å are presented. 
In all figures we use the reduced distance units r/σ where 
σ =4.25 Å. 

i) Ionic matrices formed from the size symmetric 
+1:-1 electrolyte. First, in Figure 6a we show the pair 
distribution functions for annealed cations and anions 
modelling Li and Cl ions in the 1.0 mol/L electroneutral 
ionic matrix prepared at λB,0=λB,1= 7.14 Å. The upper 
curves (with the values above unity) are for Li-Cl pair, 
and the lower ones (the values below unity) are for the 
Li-Li pair. Concentrations of the annealed electrolyte 
were c1=0.1070 mol/L (empty symbols), and c1=0.4996 
mol/L (full symbols) in this example. In Figure 6b we 
show the same distributions at stronger electrostatic 
coupling;  λB,1=14.28 Å and c1=0.1520 mol/L, with 
all other conditions unchanged (λB,0=7.14 Å). The 
”overcharging effect”, reflected in the crossing of the 
Li-Cl and Li-Li distributions, noticed before in other 
studies,5,6,22 is clearly seen in this figure. 

Fluid-matrix pair distribution functions )/(10 σrg +−   
(Cl ion-positive matrix charge) for c1=0.4996 mol/L,  
λB,1= 7.14 Å (empty symbols) and c1=0.5295 mol/L,  
λB,1 = 14.28 Å (full symbols), are displayed in panel (c) 
of the same figure. In summary, the results displayed  
in Figure 6 are similar to those published before; 5-8  
they are shown here for the sake of completeness  
and to allow comparison with the distribution  
functions calculated for other choices of matrices, i.e. 
for examples ii-iv). 

Figure 6. (a) Annealed fluid ion-ion pair distribution 
functions )/(11 σrg ++  and )/(11 σrg −+  for a model LiCl in  
1.0 mol/L electroneutral ionic matrix prepared at λB,0=7.14 Å, 
λB,1 = 7.14 Å; c1 =0.1070 mol/L (empty symbols), c1=0.4996 
mol/L (full symbols). (b) As for case a) but for λB,1=14.28 Å 
and c1=0.1520 mol/L. (c) Fluid-matrix pair distribution 
functions )/(10 σrg +−  for this case: λB,1=7.14 Å, c1=0.4996 
mol/L (empty symbols); λB,1=14.28 Å c1= 0.5295 mol/L  
(full symbols). σ = 4.25 Å
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ii ) Matrix formed from dipolar particles as shown 
in Fig. 1a. Figures 7a-c show PDFS for adsorption of 
a model LiCl in the c0= 1.0 mol/L (note that here 
c0 is the concentration of monomer beads) dipolar 
matrix prepared at λB,0 = 7.14 Å. The actual conditions 
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of adsorption (dielectric constant of solvent and 
temperature) are defined by λB,1=7.14 Å (filled circles), 
λB,1=14.28 Å (empty circles) and λB,1=28.56 Å (squares). 
In the panel (a) we show )/(11 σrg ++ , i.e. the PDFS for 
two annealed cations (Li-Li interaction). Increasing 
the strength of the Coulomb interaction altered the 
shape of the pair distribution functions. This is more 

Figure 7. (a) Annealed fluid ion-ion pair distribution functions 
)/(11 σrg ++  for a model LiCl in 1.0 mol/L dipolar matrix prepared 

at λB,0 =7.14 Å. Symbols denote: (●) λB,1= 7.14 Å, c1=0.6085 
mol/L; (○) λB,1 = 14.28 Å, c1=0.6083 mol/L; (□)λB,1 = 28.56 Å, 
c1= 0.5981 mol/L. (b) The same as in case a) for )/(11 σrg −+ . (c) 
Fluid-matrix pair distribution functions )/(10 σrg +−  for this case. 
σ = 4.25 Å.
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Figure 8. (a) Annealed fluid ion-ion pair distribution functions 
)/(11 σrg ++  and )/(11 σrg −+  for a model LiCl in 1.0 mol/L chain 

like matrix with alternating charge sign on the beads prepared 
at λB,0=7.14 Å, N=32. λB,1=7.14 Å; c1=0.0998 mol/L (empty 
symbols), c1=0.5198 mol/L (full symbols). (b) As in case 
a) but for λB,1=14.28 Å c1=0.1001 mol/L (empty symbols),  
c1= 0.4894 mol/L (full symbols). σ = 4.25 Å.
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clearly seen for λB,1=28.56 Å (panel a), where we 
observe non-monotonous behaviour of the Li-Li pair 
distribution function (squares). For this value of the 
Bjerrum parameter we actually observe a crossover of 
the )/(11 σrg ++  and )/(11 σrg −+  curves (cf panel b), which 
is more pronounced at higher concentrations of the 
annealed fluid. From the maxima and minima located 
at r ~ 2.1σ, it can be argued that Li:Cl:Li or Cl:Li:Cl 
combinations (triplets) of ions were formed. 

In Figure 7c the correlations between ions in 
solution and the charges on dipolar obstacles are shown. 
The minima in PDFS at  r~2σ  suggest that the annealed 
cation (Li) comes into contact with the negative side of 
a dipole, whereas the annealed anion (Cl) comes close 
to the positive part of it. With increasing concentration 
of the invading electrolyte the number of Li:dipole(−):
dipole(+):Cl arrangements increases. 

iii ) Matrices formed from chain-like molecules 
with charges alternating in sign on the oligomer beads 
(Fig. 1b). The results for the annealed fluid ion-ion 
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distribution functions )/(11 σrg ++ and )/(11 σrg −+ (again ’+’ 
in the subscript denotes Li and ’−’ Cl ion), for the case 
when N=32 are shown in Figure 8. The PDFS displayed 
in panel (a) apply to the the model LiCl solutions of 
concentrations c1=0.0998 mol/L (open symbols) and 
c1=0.5198 mol/L (fllled symbols) within a matrix of 
concentration c0=1.0 mol/L and for λB,1=7.14 Å. The 
results for λB,1=14.28 Å are shown in Figure 8b. 

The fluid-matrix interaction is primarily responsible 
for the adsorption or rejection of electrolyte and the 
relevant functions are shown in Figure 9. In panel 
(a) we present the negative charge on the chain -Li 
distribution functions for c1=0.0998 mol/L, λB,1=7.14 Å 
(open symbols) and c1=0.1001 mol/L, λB,1=14.28 Å 
(filled symbols), for the matrix formed at λB,0=7.14 Å. 
Note that the curves shown here differ qualitatively from 
the equivalent functions displayed in Figures 6c and 7c. 
There are two notable differences: firstly the values of 

PDFS are lower than unity for the +,- interaction pair. 
Secondly, the functions show significant structure due to 
the correlation between the various charges; especially 
the curve obtained for λB,1=14.28 Å (full symbols). 
The dependence of )/(10 σrg +−  on matrix concentration 
showing the positive charge on the chain -Cl distribution 
for λB,1=7.14 Å is given in Figure 9b. 

iv ) Chain-like matrices formed from oligoions 
with the pertaining counterions (Fig. 1c). In the last 
example we modelled the matrix as an oligoelectrolyte 
solution formed of chains carrying one positive charge 
on each monomer unit. The oligoions (number of 
monomer units N=32) are frozen together with the 
pertaining counterions at one particular equilibrium 
particle distribution, formed at λB,0=7.14 Å. The frozen 
counterions are represented by negatively charged hard 
spheres of diameter σ. In Figures 10a-c the annealed 
fluid pair distribution functions are shown for the matrix 
concentration c0 = 1.0 mol/L. In panel (a) we present 
the )/(11 σrg ++  (Li-Li) and )/(11 σrg −+ (Li-Cl) distributions 
as functions of the reduced distance; λB,1=7.14 Å. In 
panel (b) the same distribution function is shown but 
calculated for λB,1=14.28 Å. Strong Coulomb coupling 
in the latter case and the presence of charged oligoions 
caused clustering of small ions to form triplets and 
quadruplets, as indicated in Figure 10b. 

Cl ions have a charge sign which is opposite to 
the charge on the oligoion. The Cl-Cl pair distribution 
function (panel c) shows similar trends as observed for 
the Li-Li correlation. At λB,1=7.14 Å (open symbols) 
the function monotonously approaches unity. For 
λB,1=14.28 Å (filled symbols) a maximum at values 
that are slightly less than 2σ appears, in addition to a 
somewhat smeared minimum for distances between 
3σ and 4σ. The maximum suggests layering of ions 
next to highly charged oligoions: since the oligoions 
are positively charged, the first layer is formed by Cl 
ions. This induces a second layer formed by Li ions. 
This layering effect has a significant influence on the 
electrolyte distribution between the bulk solution and 
matrix phase. 

In the final two graphs of this section we present 
the annealed ion-matrix ion (Figure 11) distribution 
functions. The results shown in panel (a) present )/(10 σrg +−  
(positive matrix charge -Cl correlation function) at 
two different concentrations of LiCl. For the lower 
concentration of LiCl (c1=0.1013 mol/L, open symbols) 
we observed a broad minimum which becomes shallower 
for c1=0.4610 mol/L (filled symbols). We speculate that 
the minimum is so broad because ’frozen’ oligoions 
assume very different conformations; from almost 
fully extended to the more collapsed and U-shape 
conformation. The probability of finding a Cl ion in the 
vicinity of the positive charge on the oligoion seem to be 
partly affected by the global shape of the chain. 

Figure 9. (a) Fluid-matrix pair distribution functions )/(10 σrg −+   for 
a model LiCl in 1.0 mol/L chain like matrix with alternating 
charge sign on the beads prepared at λB,1= 7.14 Å, N=32. Empty 
symbols denote adsorption at λB,1 =7.14 Å, c1= 0.0998 mol/L; full 
symbols denote adsorption at λB,1= 14.28 Å, c1 =0.1001 mol/L . 
(b) Fluid-matrix pair distribution functions )/(10 σrg +−   for the 
same model as in case a) but for adsorption in 0.5 mol/L 
(empty symbols, c1= 0.0954 mol/L) and 1.0 mol/L (full symbols,  
c1= 0.0998 mol/L) matrix prepared at λB,0= 7.14 Å. Conditions 
of observation: λB,1= 7.14 Å. σ= 4.25 Å.
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The frozen negative charge-Li ion distribution 
function )/(10 σrg −+  has, as expected, a minimum at r ~ 
2.2σ. By combining the findings shown on Figures 10 
and 11 we can state that annealed anions accumulate 

Figure 10. (a) Annealed fluid ion-ion pair distribution functions  
)/(11 σrg ++  and )/(11 σrg −+  for a model LiCl in 1.0 mol/L chain 

like matrix with positive charge sign on the beads prepared at 
λB,0=7.14 Å, N=32. Symbols denote adsorption at λB,1=7.14 Å, 
c1=0.4610 mol/L. (b) The same as in case a) but for λB,1=14.28 Å, 
c1 = 0.4357 mol/L. (c) Annealed fluid ion-ion pair distribution 
functions )/(11 σrg −−  for this case. Empty symbols represent 
adsorption at λB,1=7.14 Å c1=0.4607 mol/L; full symbols at 
λB,1=14.28 Å, c1=0.4357 mol/L. σ =4.25 Å. 
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around positive beads of the chain, while cations come 
into contact with the quenched counterions (negatively 
charged hard spheres of diameter σ) forming + : m(−) 
: + units. Not all the numerical results we generated 
are shown here; the effect was more pronounced for 
stronger electrostatic interactions (in solvents with 
lower dielectric constant), while the concentration 
dependence shown, for example in panel (b) was not 
all that strong. 

In conclusion, the shapes of the distribution 
functions should be helpful in understanding the values 
of calculated thermodynamic quantities and we discuss 
them again in relation to the exclusion coefficient 
below. 

4.4 Adsorption isotherms and electrolyte exclusion 
The thermodynamic equilibrium requires that 

all permeable ions have an equal electrochemical 
potential in the bulk (unperturbed) electrolyte and 
matrix “phases”.34

 
From this statement it follows that 

the mean activity coefficient of the adsorbed +1:-1 
electrolite γ±,1  is given by: 

Figure 11. (a) Fluid-matrix pair distribution functions )/(10 σrg +−  
for a model LiCl in 1.0 mol/L chain like matrix with positive 
charge sign on the beads prepared at λB,0=7.14 Å; c1=0.1013 
mol/L (empty symbols), c1=0.4610 mol/L (full symbols). (b) As 
in case a) but for )/(10 σrg −+ . λB,1=7.14 Å, σ =4.25 Å
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where < c+ > and < c- > are the average concentrations 
of cations and anions in the nanoporous phase  
(< c+ >=< c- >=< c1 >) and bulk,±γ  is the mean 
activity coefficient of the bulk electrolyte. To obtain this 
quantity ( bulk,±γ ) for a given electrolyte concentration 
cbulk one has to run a separate grand canonical Monte 
Carlo simulation of the bulk electrolyte, or to calculate 
the quantity by some other theoretical method. In the 
present study, we used the hypernetted-chain theory 
to calculate the mean activity coefficient of the model 
LiCl electrolyte as a function of its concentration cbulk 
(see, for example, ref. 35). 

Eq. 7 defines the adsorption isotherm. These results 
are shown in Fig. 12, where the average concentration of 
annealed electrolyte, <c1>, is presented as a function 
of the mean activity, 11,

1 ca ±± = γ .The isotherms for 
adsorption in different matrix representations are 
shown as follows: empty symbols denote adsorption in 
a 0.5 mol/L matrix, while full symbols denote adsorption 

contact with the quenched counterions (negatively charged hard spheres of diameter σ) forming

+ : m(−) : + units. Not all the numerical results we generated are shown here; the effect

was more pronounced for stronger electrostatic interactions (in solvents with lower dielectric

constant), while the concentration dependence shown, for example in panel (b) was not all that

strong.

In conclusion, the shapes of the distribution functions should be helpful in understanding

the values of calculated thermodynamic quantities and we discuss them again in relation to the

exclusion coefficient below.

4.4 Adsorption isotherms and electrolyte exclusion

The thermodynamic equilibrium requires that all permeable ions have an equal electrochemical

potential in the bulk (unperturbed) electrolyte and matrix “phases”.34 From this statement it

follows that the mean activity coefficient of the adsorbed +1:-1 electrolite γ±,1 is given by:

γ2

±,1 =
c2
bulk

< c+ >< c− >
γ2

±,bulk, (7)

where < c+ > and < c− > are the average concentrations of cations and anions in the

nanoporous phase (< c+ >=< c− >=< c1 >) and γ±,bulk is the mean activity coefficient of

the bulk electrolyte. To obtain this quantity (γ±,bulk) for a given electrolyte concentration cbulk

one has to run a separate grand canonical Monte Carlo simulation of the bulk electrolyte, or

to calculate the quantity by some other theoretical method. In the present study, we used the

hypernetted-chain theory to calculate the mean activity coefficient of the model LiCl electrolyte

as a function of its concentration cbulk (see, for example, ref. 35).

Eq. 7 defines the adsorption isotherm. These results are shown in Fig. 12, where the average

concentration of annealed electrolyte, < c1 >, is presented as a function of the mean activity,

a1
±

= γ±,1c1. The isotherms for adsorption in different matrix representations are shown as

follows: empty symbols denote adsorption in a 0.5 mol/L matrix, while full symbols denote

adsorption at c0 = 1.0 mol/L. In all the cases shown here the matrix was prepared at λB,0 = 7.14

Å. Further, squares represent adsorption at stronger Coulomb coupling, λB,1 = 14.28 Å , while

circles denote the results for λB,1 = 7.14 Å.

As can be seen from Figures 12a-d, the amount of electrolyte adsorbed increases on in-
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(7)

Figure 12. Adsorption isotherms (lines with symbols) for a LiCl model electrolyte confined in a) disordered electroneutral ionic matrix, b) 
dipolar matrix, c) chain-like matrix with beads carrying alternating charges (N=32) and d) chain-like matrix with beads carrying positive 
charge neutralized by negative counterions (N=32). From top to bottom: c0= 0.5 mol/L, λB,1= 14.28 Å (□); c0=1.0 mol/L, λB,1=14.28 Å (■); 
c0=0.5 mol/L, λB,1= 7.14 Å, (○); c0=1.0 mol/L, λB,1=7.14 Å, (●).λB,0=7.14 Å. Symbols denote the GCMC simulation. 
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at c0=1.0 mol/L. In all the cases shown here the matrix 
was prepared at λB,0 =7.14 Å. Further, squares represent 
adsorption at stronger Coulomb coupling, λB,1 =14.28 Å, 
while circles denote the results for λB,1=7.14 Å.

As can be seen from Figures 12a-d, the amount of 
electrolyte adsorbed increases on increasing the mean 
activity of the adsorbing electrolyte, and it is lower for 
more concentrated matrices. This is not difficult to 
understand: for concentrated systems more space is 
occupied by the matrix particles and the exclusion volume 
effect, forcing electrolyte out of the matrix, plays a more 
important role. The difference between the amount 
of electrolyte adsorbed in 0.5 mol/L and 1.0 mol/L 
matrices is smaller at lower electrolyte activities. In 
addition, the adsorption is stronger for higher Bjerrum 
lengths. Electrostatic interactions between fluid ions, as 
well as between fluid and the matrix charges, in the case 
of  λB,1=14.28 Å are twice as strong as for λB,1 =7.14 Å. 
It can be seen from Figures 12a-d that doubling of 
the Bjerrum length, and concomitant increase of the 
Coulomb interaction between ions of the system, has a 
more pronounced effect on the amount of electrolyte 
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adsorbed than, for example, doubling the concentration 
of matrix particles c0. 

Another way of presenting these results is often 
chosen in the electrochemical literature, i.e to calculate 
the so-called Donnan exclusion coefficient. This 
quantity is defined as: 27

creasing the mean activity of the adsorbing electrolyte, and it is lower for more concentrated

matrices. This is not difficult to understand: for concentrated systems more space is occupied

by the matrix particles and the exclusion volume effect, forcing electrolyte out of the matrix,

plays a more important role. The difference between the amount of electrolyte adsorbed in

0.5 mol/L and 1.0 mol/L matrices is smaller at lower electrolyte activities. In addition, the

adsorption is stronger for higher Bjerrum lengths. Electrostatic interactions between fluid ions,

as well as between fluid and the matrix charges, in the case of λB,1 = 14.28 Å are twice as

strong as for λB,1 = 7.14 Å. It can be seen from Figures 12a-d that doubling of the Bjerrum

length, and concomitant increase of the Coulomb interaction between ions of the system, has a

more pronounced effect on the amount of electrolyte adsorbed than, for example, doubling the

concentration of matrix particles c0.

Another way of presenting these results is often chosen in the electrochemical literature, i.e

to calculate the so-called Donnan exclusion coefficient. This quantity is defined as: 27

Γ =
cbulk− < c1 >

cbulk

, (8)

where < c1 > is the average concentration of model LiCl inside the matrix. Positive values

of Γ indicate that electrolyte is excluded from the nanoporous material, which represents the

basis of the desalination process, while negative values indicate electrolyte sorption. The results

for Γ as a function of the bulk electrolyte concentration for various matrices are shown in Figure

13a-d.

First we discuss Figures 13a and 13b showing Γ values for the case of adsorption in (a) c0

= 1.0 mol/L and (b) 0.5 mol/L matrices at λB,1 = 7.14 Å. It can be seen that in general the

electrolyte was excluded (’rejected’) from the adsorbing material. An exception seems to be (cf

panel a; triangles) matrices formed from chainlike ions (oligoelectrolyte) with related quenched

counterions (case iv) at low values of cbulk. Also, exclusion of the model LiCl for the case of

λB,1 = 7.14 Å was greater for a dipolar matrix than for a chainlike ampholyte-type matrix in

this range of observation. This difference was smaller for less concentrated matrices (panel b),

which can be ascribed to the smaller exclusion volume effect. As expected, for all the examples

studied here, the exclusion coefficient increased on increasing the electrolyte concentration.

The same quantity for stronger electrostatic coupling (λB,1 = 14.28 Å) is shown Figures 13c-

d. The situation is a little more complicated here; namely, at low electrolyte concentrations
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where <c1>is the average concentration of model LiCl 
inside the matrix. Positive values of Γ indicate that 
electrolyte is excluded from the nanoporous material, 
which represents the basis of the desalination process, while 
negative values indicate electrolyte sorption. The results 
for Γ as a function of the bulk electrolyte concentration 
for various matrices are shown in Figure 13a-d. 

First we discuss Figures 13a and 13b showing Γ 
values for the case of adsorption in (a) c0=1.0 mol/L 
and (b) 0.5 mol/L matrices at λB,1=7.14 Å. It can be seen 
that in general the electrolyte was excluded (’rejected’) 
from the adsorbing material. An exception seems to be  
(cf panel a; triangles) matrices formed from chainlike 
ions (oligoelectrolyte) with related quenched counterions 
(case iv) at low values of cbulk. Also, exclusion of the 
model LiCl for the case of λB,1=7.14 Å was greater for 
a dipolar matrix than for a chainlike ampholyte-type 
matrix in this range of observation. This difference 
was smaller for less concentrated matrices (panel b), 
which can be ascribed to the smaller exclusion volume 
effect. As expected, for all the examples studied here, 
the exclusion coefficient increased on increasing the 
electrolyte concentration. 

The same quantity for stronger electrostatic 
coupling (λB,1=14.28 Å) is shown Figures 13c-d. The 
situation is a little more complicated here; namely, at 
low electrolyte concentrations rejection was greater 
for polyampholyte matrices (stars and crosses) than 
for dipolar matrices (filled squares). This fact suggests 
that electrostatic interactions prevail over the exclusion 
volume term at smaller electrolyte concentrations and 
at higher couplings. The concentration of adsorbing 
electrolyte in case iii) was almost independent of chain 
length; it was only slightly smaller in the case of longer 
(N=32) chains. 

Interestingly, for adsorption in an electroneutral 
ionic matrix (case i , filled circles) intake (sorption) 
of invading electrolyte could be observed at higher 
electrostatic couplings (λB,1=14.28 Å) and for low 
electrolyte concentrations as shown in panel (c). Sorption 
was stronger for oligoelectrolyte matrices (triangles) 
and could also be observed at lower concentrations for 
the case of λB,1=7.14 Å (cf panel a). We can explain the 
sorption of the model electrolyte in examples i) and iv) 
by the fact that the adsorbing ions feel the separation 
of positive or negative charges and tend to compensate 

for them. In other words, an invading Li ion seeks to 
neutralize the negative matrix charge and oppositely, 
the invading Cl ion searches for ’pockets’ of positive 
charge. It is important that these ’pockets’ of positive 
and negative matrix charges be well separated; intake is 
expected to be bigger, for matrices where the separation 
between positive and negative charges is larger. This 
explains why the effect is the largest in case iv), where we 
have chains made of beads carrying exclusively positive 
charge and the corresponding negative counterions, 
occupying different domains of space. 

On the contrary, in the case of dipolar matrices 
this charge “separation” does not exist –an invading 
ion feels a dipole as, more or less, an electroneutral 
unit. The case of polyampholyte matrices lies between 
the cases ii) and iv). In summary, the strongest intake 
of electrolyte is expected in the case of oligoelectrolyte 
(charged oligoions) matrices, and at higher couplings 
also for the case of electroneutral ionic matrices. In 
all other cases, the electrolyte is rejected from the 
matrices: this effect is greater in more concentrated 
matrices and for a weaker Coulomb interaction (smaller  
λB,1= 7.14 Å).

Hitherto, in all the cases discussed, the parameter 
defining the conditions of matrix preparation was fixed 
at λB,0=7.14 Å. We also carefully examined situations 
in which the matrix was prepared at higher Coulomb 
couplings, i.e. at λB,0=14.28 Å. We found that the 
conditions of matrix formation, in many cases, have 
only a minor impact on electrolyte adsorption. Of 
course, the effect of the matrix preparation is expected 
to be stronger when it yields distributions of obstacles 
with a more pronounced separation of the positive and 
negative charge within the matrix. 

In trying to understand the differences in 
adsorption in the various matrices from the structural 
point of view, we return to the radial distribution 
functions shown in subsection 4.3. It is enough to 
discuss two opposite cases; for the matrix containing 
polyampholyte chains iii) we have rejection of the 
electrolyte from the matrix (Γ > 0). In contrast to this 
a net intake of the electrolyte, i.e. Γ < 0 is obtained 
for the example iv). The PDFS for these two cases 
should explain why we have rejection in one case and 
adsorption in another. 

While there is no crossing of the PDFS for Li-Li 
and Li-Cl in the case of polyampholyte matrices (not 
even at higher electrostatic interactions) (Fig. 8a-b), 
we observe this effect in the case of oligoelectrolyte 
matrices already at λB,1=7.14 Å. The ’charge inversion’ 
is more pronounced for stronger Coulomb coupling 
(Fig. 10a-b). Furthermore, PDFS for the annealed 
anion-positive charge of the matrix (or the annealed 
cation-negative charge of the matrix) for polyampholyte 
chains (case iii) are lower than unity for distances close 
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Figure 13. Donnan exclusion coefficient (Γ) for a LiCl model electrolyte confined in a disordered nanoporous material as a function of 
external bulk concentration. Figure a) c0 = 1.0 mol/L, λB,1 = 7.14 Å; b) c0= 0.5 mol/L, λB,1=7.14 Å; c) c0=1.0 mol/L, λB,1=14.28 Å; and d) 
c0=0.5 mol/L, λB,1=14.28 Å. Symbols denote: (●) disordered electroneutral ionic matrix; (■) dipolar matrix; chain-like matrix with beads 
carrying alternating charges: (*) N=16; (+) N=32; and (▲) chain like matrix with beads carrying positive charge neutralized by negative 
counterions (N=32). λB,1=7.14 Å.
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to the contact value. For the annealed anion it is not 
in a very favourable position (neither energetically, 
nor sterically) to make a close contact with a positive 
bead of the polyampholyte chain, since the latter is in 
contact with two negative beads. The same holds true 
for an annealed cation; the effect is more pronounced 
for weak Coulomb interactions and for adsorption in 
less concentrated matrices (see Fig. 9a-b). 

On the other hand, the fluid-matrix pair distribution 
functions, in the case of polyelectrolyte chains (iv) are 
higher than unity for the oppositely charged particles, 
which indicates attraction between the annealed ions 
and the matrix charges (Fig. 11a-b). The extremes in 
PDFS shown in Figures 10a-b and 11a-b indicate, on one 
hand, a) the accumulation of Cl ions around positively 
charged matrix chains, and b) the formation of triplets 
of Li ions with the quenched matrix anions, on the 
other. These two effects contribute toward increased 
adsorption, which is reflected in the negative values of 
exclusion coefficient Γ, in contrast to the example (iii), 
where the coefficient Γ is positive. 

5. Conclusions 

Utilizing the grand canonical Monte Carlo 
calculations we examined the structural and 
thermodynamic properties of various partly quenched 
systems. The adsorbent-adsorbate system was composed 
of two subsystems: the so-called quenched phase 
(matrix) and an annealed fluid which under the 
conditions of observation was thermally equilibrated 
within quenched matrix particles (obstacles). The model 
for the annealed fluid was in all cases the same, i.e. the 
primitive model electrolyte, mimicking LiCl solution. It 
was assumed that thermal equilibrium was established 
with a surrounding bath of LiCl solution. The main 
purpose of this paper was to examine the adsorption 
of model electrolyte in matrices with various spatial 
distributions of the quenched charges. 

The distribution of annealed fluid within four 
different matrices was examined: i) a matrix formed 
by a rapid quench of some equilibrium distribution 
of a primitive model +1:-1 electrolyte at conditions 
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T0 and ε, ii) a matrix consisting of fused hard spheres 
with opposite unit charge, iii) a matrix mimicking 
a quenched polyampholyte and represented as a 
collection of chainlike molecules with alternating unit 
charge on the beads,  iv) a matrix composed of quenched 
charged chainlike molecules (oligoelectrolyte) and 
corresponding quenched counterions. The solvent in all 
the cases was treated as a dielectric continuum. 

Structural data for the adsorbed fluid, presented 
in the form of various pair distribution functions, show 
that the behaviour of adsorbed LiCl was different 
from that for the bulk electrolyte. The confinement 
effect was more pronounced for higher electrostatic 
interactions. Crossovers of like and unlike ion-ion PDFS 
were observed, indicating ’charge inversion’ for strong 
Coulomb interactions. 

The thermodynamic parameter of interest in this 
study was the excess chemical potential (mean activity 
coefficient) of the adsorbed electrolyte or, equivalently, 
the Donnan exclusion coefficient. The results indicate 
that electroneutral adsorbents with charged obstacles 
could either reject or adsorb the electrolyte; in other 
words, the Donnan exclusion coefficient could be 
positive or negative. Whether we have an intake of 
electrolyte or a rejection depends primarily on the 
spatial distribution of the charges in the matrix, and on 
the strength of the electrostatic interaction dictated by 
the dielectric constant of the solvent and also, to lesser 
degree, on the concentrations of the two phases. For 
small activities of the adsorbing electrolyte and for 
small concentration of the matrix particles (smaller 
exclusion volume effect), intake of LiCl was observed in 
cases  i) and  iv). On the other hand, a rejection of the 
electrolyte was observed for ii) and iii) over the whole 
range of observations, as also for higher activities of the 
bulk LiCl solution in the cases  i) and  iv). 

Clearly, electrolyte adsorption was strongly 
correlated with the spatial distribution of the matrix 
charges. In the examples i) and iv), the spatial 
separation of quenched positive and negative charges 
was compensated by an invading electrolyte and 
sorption of LiCl took place. The situation was more 
expressed in the latter case iv), since there was stronger 
separation of the positive (charged chains) and negative 
charges (counterions) than in case i). The charge 
separation was much smaller in the case of dipolar ii) 
or polyampholyte type of matrices  iii), where individual 
obstacles are electroneutral, and consequently in these 
cases electrolyte rejection was observed. The exclusion 
volume effect dominated over electrostatic effects. 

In conclusion, we may say that the amount of 
electrolyte adsorbed depends strongly on the spatial 
distribution of the matrix charges, on the conditions 
of observation, given by the dielectric constant of 
the solvent, as well as by on the concentrations of 

all components present. Intake of electrolyte can be 
expected for matrices where separation between the 
domains of the positive and negative charge is large, and 
is amplified with increasing Coulomb coupling.
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Povzetek 
S pomočjo velekanonične Monte Carlo simulacije smo proučevali strukturne in termodinamske lastnosti raztopin 
modelnega elektrolita v neurejeni porozni snovi, ki vsebuje elektronevtralno kombinacijo nabojev. Porozno snov 
(adsorbent) smo si zamislili kot i) ravnotežno razporeditev ionov v +1: −1 elektrolitu pri neki koncentraciji c0, 
ii) kot sistem dipolov (delec sestavljata pozitivno in negativno nabiti kroglici), iii) kot zbir verig, sestavljenih 
iz togih kroglic z alternirajočim nabojem (poliamfolit), ter iv) kot sistem pozitivno nabitih verigastih molekul 
(oligoelektrolit) s pripadajočimi protiioni. Modelni elektrolit (adsorbat) je bil v termodinamskem ravnotežju 
z adsorbentom (delci adsorbenta so bili zamrznjeni v prostoru) ter zunanjo raztopino enake kemijske sestave. 
Topilo smo v vseh primerih obravnavali kot dielektrični kontinuum. Zanimalo nas je, kakšen vpliv ima razporeditev 
nabojev v porozni snovi na srednji koeficient aktivnosti adsorbiranega modelnega +1:−1 elektrolita. Izvedli smo 
računalniško simulacijo za niz parametrov, ki določajo stanje modela: spreminjali smo koncentracijo in razporeditev 
nabojev nanoporozne snovi ter koncentracijo modelnega elektrolita, pogoje priprave adsorbenta ter pogoje pri 
katerih sistem opazujemo. Računi so potrdili naša pretekla dognanja, da termodinamične lastnosti adsorbata 
močno zavisijo od  temperature in dielektrične konstante topila, kakor tudi od koncentracije delcev adsorbenta 
ter adsorbata. Vpliv razporeditve nabojev adsorbenta na adsorpcijo elektrolita je pomemben, in še zlasti izrazit 
pri močnejših Coulombskih interakcijah.


