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Abstract
We perform all-atom computer simulations on nearly one hundred 6-, 8-, 10-, and 12-mer peptide fragments of protein
G, and look for stable states. We simulated by replica-exchange molecular dynamics using Amber7 with the parm96
force-field and a GB/SA (generalized-Born/solvent accessible) implicit solvent model. We find that useful diagnostics
for identifying stable converged structures are the conformational entropy and free energy of each state. A large gap in
the ground-state free-energy, and a low entropy indicate convergence to a single preferred peptide conformation. We
find that a non-negligible fraction of such structures have some native-like character. Such physics-based modeling may
be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that
utilize the assembly of peptide fragments.

tional preferences. A popular set of peptide fragment con-
formations is the I-sites library of David Baker and his co-
workers19, 20 From the recent CASP (Critical Assessment
of Techniques for Structure Prediction) protein structure
prediction competition, it was noted that most of the suc-
cessful de novo methods start with small fragments21, 22

which are then combined together into a predicted tertiary
structure.

However, it would be desirable to achieve high-reso-
lution protein structure prediction in models that are pure-
ly physics-based, for various reasons. Such predictions
would not rely on information contained in protein struc-
ture databases. First, it would put our understanding of
protein structures and driving forces on a deeper and more
physical foundation. For example, such methods could
elucidate the physical routes of protein folding. Second, it
would allow the prediction of non-native states, too, those
that are of interest for protein folding kinetics and stabili-
ty. Third, it would allow us to treat induced fit binding of
ligands, or other conformational changes.

There is good evidence that physical models can
capture these conformational propensities of peptides.
Simple physical models can reproduce the structural bias-
es of certain peptide fragments.23–26 To date, however,
such studies have largely focused on selected peptides that
are expected to fold. Moreover, several models of protein

1. Introduction

A long-standing goal of computational biology has
been to devise a computer algorithm that takes, as input,
an amino acid sequence and gives, as output, the three-di-
mensional native structure of a protein. A main motivation
is to make drug discovery faster and more efficient by re-
placing slow expensive structural biology experiments
with fast cheap computer simulations. There are many
successful bioinformatics approaches to this problem.1–5

Those methods draw heavily from knowledge bases of
known protein native structures. Our interest here is in
whether purely physical all-atom force field models are
capable of identifying native-like starting points from
small peptide fragments.

Short peptide fragments of proteins often have in-
trinsic propensities for the formation of their native con-
formations. NMR experiments6 show that long peptide
fragments have native-like conformations.7–11 Some short
peptides in solution have also been shown to adopt their
native secondary structures: α helices12, 13 and β hair-
pins.14–18 As a consequence, peptide conformational
propensities that are taken from the protein databank
(PDB) are now widely used in protein-structure prediction
algorithms. Most current protein structure prediction
methods make some use of database-derived conforma-



386 Acta Chim. Slov. 2008, 55, 385–395

Urbi~ et al.:   Molecular simulations find stable structures in fragments of Protein G

folding kinetics are premised on the idea that folding
routes begin with metastable structures of small peptide
fragments.27–30 In recent work Ho et al31 simulated 133
peptide 8-mer fragments from six different proteins. In
that work, it was found that more than 30 percent of the
peptide fragments converge to a preferred structure, some
of which are native-like. In the present study, we extend
beyond that work, through a systematic exploration of dif-
ferent fragment chain lengths

The present study provides a test of physics-based
all-atom simulations – the quality of the force field and
solvation model, and the adequacy of current typical lev-
els of sampling. There are well known problems with
commonly used molecular mechanics force fields. Yoda et
al.32 conducted multicanonical simulations of several
small peptides (the α-helical C-peptide of ribonuclease A
and the C-terminal β-hairpin of protein G) by using six
common force fields (AMBER94, AMBER96, AM-
BER99, CHARMM22, OPLS/AA/L, and GROM0S96) in
explicit solvent and concluded that all of these force fields
have different propensities to form secondary structures
because of the differences in backbone torsional energies.
Also, it is still largely an open question as to how well
these implicit solvent models can predict the thermody-
namics as well as the kinetics of protein folding. Zhou33

tested different combinations of force fields and solvation
models on the C-terminal β-hairpin of protein G. He
found the best balanced combination to be AMBER96/
GBSA, so we use that here.

Here, we study 26 6-mer peptide fragments from
protein G, 25 8-mers, 24 10-mers and 23 12-mers. We use
replica-exchange molecular dynamics sampling34 in
Amber735, with the parm96 parameters36 and the GB/SA
implicit solvent model of Tsui and Case37. We are interest-
ed in whether this physical model can identify native-like
secondary structures in peptide fragments. We systemati-
cally generate a series of peptide fragments with overlap-
ping sequences from the original protein sequence.
Neighboring fragments have a 4–10 residue overlap (and
two-residue gap). We simulate each peptide using 16
replicas for 5 ns/replica.

2. Computational Details

2. 1. Simulation Details
We utilized replica-exchange molecular dynamics

(REMD)34 using a custom PERL script wrapper (http://
www.dillgroup.ucsf.edu/∼jchodera/code/rex) around the
SANDER molecular dynamics program for the Amber7
molecular-modeling package.35 REMD periodically at-
tempts to exchange conformations between independent
molecular dynamics simulations running in parallel at dif-
ferent temperatures, based on a Metropolis-like criterion.
This allows individual replicas to heat up to overcome bar-
riers and then cool back down to temperatures of interests.

REMD has two advantages. It explores more conforma-
tional space then conventional molecular dynamics tech-
niques.38 And, REMD samples from the canonical ensem-
ble at each temperature. This sampling gives proper esti-
mates of free energies, not just energies. We used 16 repli-
cas exponentially spaced between 270 K and 690 K. The
probability of exchange-acceptance was approximately
50%. Exchanges were attempted every 1 ps. Between ex-
change attempts energy-conserving molecular dynamics
was used with a 2 fs time step. After each exchange attempt
the velocities were randomized from the appropriate
Maxwell-Boltzmann distributions to ensure sampling from
the canonical ensemble at the appropriate temperature.

The protein is chopped into overlapping fragments 6
to 12 residues in length. Fragments were modeled with the
Amber Parm96 force field36 with GB implicit solvent
model and surface area penalty term of 5 cal · mol–1 · Å–2

of Tsui and Case.37 All fragments were capped at N and C
termini with acetyl and N-methylamine blocking groups
to avoid undue influence from the zwitterionic termini.
The fragments were initialized in extended state. The
bonds to hydrogens were constrained with the SHAKE.39

Simulations were run for 5 ns per replica. Configurations
were stored every 1 ps for analysis.

2. 2. Thermodynamic Properties

The results were analyzed by the weighted histogram
analysis (WHAM).40, 41 In order to extract thermodynamic
observables for a target temperature T we must reweight
the configurations taken from each temperature Tk in order
to combine them into a representative ensemble.41

We first calculate the dimensionless free energy fk
for each replica k. We start with an approximate value for
fk and calculate the density of states ΩkE with energy E in
replica k as

(1)

where NkE is number of sampled configurations with ener-
gy E from replica k.            inverse temperature, kB
Boltzmann constant and Nkl number of configurations of
replica k at temperature Tl. From the updated density of
states we can calculate an updated estimate of dimension-
less free energy by

(2)

We iterate equations (1) and (2) until the free energy
converges. Then we can use the these data to reweight the
relative free energy profile F of state i to the inverse target
temperature or we can calculate the estimator of the ex-
pectation for any observable.41
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2. 3. Mesostates

To analyze our date, we form discrete bins of the
backbone degrees of freedom31. This process has a long
history, dating back to the original work of Ramachandran
et al,42 who divided the backbone φ – ψ angles into three
district regions, which are known as α, αL and β. We de-
scribe the conformation of the peptide backbone as a
string of discrete mesostates that we call a mesostring.
Each mesostring describes a state that is separated by an
energy barrier from other mesostrings. This means that
each mesostring corresponds to local minima in the con-
formation space of the peptide backbone. When we know
all mesostrings it is easy to find the one with lowest ener-
gy and get structure from the lowest energy basin. This
partitioning in the terms of discrete regions in the back-
bone angles has been observed in a molecular dynamics
simulation of an α-helical peptide.43 For mesostring
analysis we cannot use the database analysis to define the
boundaries of the backbone mesostates because current
force fields cannot replicate the database distribution of φ
– ψ angles.31 Ho and coworkers31 define the boundaries of
the backbone mesostates in the terms of the same force
field we use here. They ran replica-exchange simulations
of the alanine dipeptide and the glycine dipeptide to de-
fine the boundaries of different mesostates. They break up
the Ramachandran plot in terms of the following meso-
states: 

[b] : (–180° < φ < 0°, 45° < φ < 180°)
U(–180° < φ < 0°,–180° < φ < –135°)
U(120° < φ < 180°, 45° < φ < 180°)

U(120° < φ < 180°,–180° < φ < –135°)

[a] : (–180° < φ < 0°,–135° < φ < 45°)
U(120° < φ < 180°,–135° < φ < 45°)

[l] : (0° < φ < 120°,–180° < φ < 180°)
U(120° < φ < 180°,–135° < φ < 45°)

and for glycin

[b] : (–180° < φ < 0°, 45° < φ < 180°)
U(–180° < φ < 0°,–180° < φ < –135°)

U(0° < φ < 180°, 135° < φ < 180°)
U(0° < φ < 180°,–180° < φ < –45°)

[a] : (–180° < φ < 0°,–135° < φ < 45°)

[l] : (0° < φ < 180°,–45° < φ < 135°)

With the use of dimensionless free energies fk (Eq. (2)) we
reweight the free energy profile Fi of mesostring i at the
inverse target temperature β as

(3)

After using WHAM to calculate the relative free energies
Fi of the mesostrings i we calculate the probabilities pi of
this mesostring by 

(4)

When each simulation is completed, each fragment will
have different populations of the various mesostrings and
also different free energies. The ground mesostring is the
mesostate with the highest population and the lowest free
energy. We then determine whether each peptide finds a
metastable structure. We define the existence of the struc-
ture in the fragment in terms of two properties of
mesostring. First, we use the probability pi of the ground
mesostring. Second, we use the free energy gap ∆F be-
tween the ground mesostring and the next mesostring.
When the ground mesostring is nearly identical to next
mesostring, it indicates a lack of preference of the force
field for a particular structure. If the most populated
(ground mesostring) differs by only one mesostate, we
group them into a consensus mesostring, which contains
one indefinite mesostate signified by [−]. When we group
similar mesostrings into consensus mesostring we calcu-
late the free energy difference to another mesostring j by

(5)

The backbone entropy is calculated using the Boltzmann
formula

(6)

The backbone entropy is useful for measuring for a given
fragment the sharpness of the distribution of probabilities
of the mesostring. The more peaked the distribution is
and, thus the more favored the mesostring is, the lower is
the backone entropy. In this way, the backbone entropy in-
dicates whether any one conformation is substantially fa-
vored over the others for given fragment. The fragments
having low mesostring entropy can be considered as early
folding nuclei to initiate folding.

2. 4. Contact Maps

The three-dimensional structure of a protein may be
compactly represented as a symmetrical, square matrix of
pairwise, inter-residue contacts, called the contact map.44,45

The contact map provides useful information about the
protein’s secondary structure and it also captures non-lo-
cal interactions giving clues to its tertiary structure.

We define that two residues xi and xj in a protein are
in a contact if the distance dij between α-carbon atoms of
the residues xi and xj is lower then some threshold value.
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In our case we chose 7 Å. Distance dij is defined as

(7)

where ri and rj are the coordinates of α-carbon atoms. A
contact map for protein with N residues is an N × N bina-
ry matrix S in which the elements Sij are defined as

(8)

Note that we require a minimum sequence distance of 4 to
call it a contact.

3 Results and Discussion

In this study, we chopped protein G in 26 peptide 6-
mer fragments, 25 8-mers, 24 10-mers and 23 12-mers.
We systematically generate a series of peptide fragments
with overlapping

sequences from the original protein sequence. Neighbo-
ring fragments have a 4–10 residue overlap (and a two-
residue gap). Table 1 shows the sequences of the frag-
ments. We simulated each peptide using 16 replicas for 5
ns per replica. We clustered our conformations analyzed

we use the probability p1 to determine the population of
the ground mesostring. We identified a stable structure if
∆F > 0.6 kcal/mol and p1 > 38%, which is slightly differ-
ently then was used previously by Ho et al.31 We used a 1
ns window for analyzing the mesostrings. Tables 2–5

them using mesostring analysis. We looked for structural
biases in each peptide. We used two criteria. First, we use
the free energy gap ∆F between the ground mesostring
and the next mesostring with higher free energy. Second,

Fragment Sequence of 6-mers Sequence of 8-mers Sequence of 10-mers Sequence of 12-mers
frag1 1-MTYKLI 1-MTYKLILN 1-MTYKLILNGK 1-MTYKLILNGKTL
frag2 3-YKLILN 3-YKLILNGK 3-YKLILNGKTL 3-YKLILNGKTLKG
frag3 5-LILNGK 5-LILNGKTL 5-LILNGKTLKG 5-LILNGKTLKGET
frag4 7-LNGKTL 7-LNGKTLKG 7-LNGKTLKGET 7-LNGKTLKGETTT
frag5 9-GKTLKG 9-GKTLKGET 9-GKTLKGETTT 9-GKTLKGETTTEA
frag6 11-TLKGET 11-TLKGETTT 11-TLKGETTTEA 11-TLKGETTTEAVD
frag7 13-KGETTT 13-KGETTTEA 13-KGETTTEAVD 13-KGETTTEAVDAA
frag8 15-ETTTEA 15-ETTTEAVD 15-ETTTEAVDAA 15-ETTTEAVDAATA
frag9 17-TTEAVD 17-TTEAVDAA 17-TTEAVDAATA 17-TTEAVDAATAEK
frag10 19-EAVDAA 19-EAVDAATA 19-EAVDAATAEK 19-EAVDAATAEKVF
frag11 21-VDAATA 21-VDAATAEK 21-VDAATAEKVF 21-VDAATAEKVFKQ
frag12 23-AATAEK 23-AATAEKVF 23-AATAEKVFKQ 23-AATAEKVFKQYA
frag13 25-TAEKVF 25-TAEKVFKQ 25-TAEKVFKQYA 25-TAEKVFKQYAND
frag14 27-EKVFKQ 27-EKVFKQYA 27-EKVFKQYAND 27-EKVFKQYANDNG
frag15 29-VFKQYA 29-VFKQYAND 29-VFKQYANDNG 29-VFKQYANDNGVD
frag16 31-KQYAND 31-KQYANDNG 31-KQYANDNGVD 31-KQYANDNGVDGE
frag17 33-YANDNG 33-YANDNGVD 33-YANDNGVDGE 33-YANDNGVDGEWT
frag18 35-NDNGVD 35-NDNGVDGE 35-NDNGVDGEWT 35-NDNGVDGEWTYD
frag19 37-NGVDGE 37-NGVDGEWT 37-NGVDGEWTYD 37-NGVDGEWTYDDA
frag20 39-VDGEWT 39-VDGEWTYD 39-VDGEWTYDDA 39-VDGEWTYDDATK
frag21 41-GEWTYD 41-GEWTYDDA 41-GEWTYDDATK 41-GEWTYDDATKTF
frag22 43-WTYDDA 43-WTYDDATK 43-WTYDDATKTF 43-WTYDDATKTFTV
frag23 45-YDDATK 45-YDDATKTF 45-YDDATKTFTV 45-YDDATKTFTVTE
frag24 47-DATKTF 47-DATKTFTV 47-DATKTFTVTE
frag25 49-TKTFTV 49-TKTFTVTE
frag26 51-TFTVTE

.

Table 1: Sequences of 6, 8, 10 and 12-mers fragments used in calculations. 

Figure 1: Contact map for different 6-mers. Contact map of native
protein G is shown with diamonds, for different structured 6-mers
with crosses.
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Table 3: Same as table 2, but for 8-mers.

Fragment RMSD Native Ground p1 ∆∆F TS
Å mesostring mesostring % kcal/mol kcal/mol

frag1 4.6 bbbbbbba aaaaaaaa 30 0.43 1.34
frag2 5.5 bbbbbaba baaaaabb 21 0.01 1.51
frag3 3.8 bbbabaab bbbbbaab 28 0.31 1.38
frag4 3.0 babaabbb bb-aabbb 57 1.00 1.25
frag5 4.6 baabbbbb bblaabbb 11 0.00 1.69
frag6 6.1 abbbbbbb bbaaabba 12 0.02 1.73
frag7 5.6 bbbbbbbb bbaaaaaa 25 0.03 1.26
frag8 4.3 bbbbbbab -aaaaaaa 55 0.68 1.18
frag9 3.8 bbbbabaa abaaaabb 43 0.48 1.13
frag10 2.5 bbabaaaa b-baaaab 63 1.29 1.22
frag11 4.0 abaaaaaa bblaabbb 14 0.08 1.65
frag12 2.3 aaaaaaaa baaaaaaa 20 0.17 1.48
frag13 4.3 aaaaaaaa aaaaaaaa 30 0.41 1.34
frag14 3.6 aaaaaaaa baaaaaaa 44 0.37 1.01
frag15 4.5 aaaaaaaa lbaaaabb 35 0.47 1.23
frag16 3.7 aaaaaaal bbaaabbb 21 0.27 1.71
frag17 3.4 aaaaalbb bbbaabbb 28 0.42 1.46
frag18 3.4 aaalbbab baababbb 12 0.11 2.08
frag19 4.4 albbabbb bbaa-bbb 23 0.53 1.77
frag20 4.4 bbabbbbb babaaaab 41 0.68 1.35
frag21 6.9 abbbbbaa bbaaaabb 17 0.01 1.51
frag22 3.4 bbbbaaal aaaaaaaa 30 0.10 1.24
frag23 3.0 bbaaalbb babaaa-b 78 1.10 0.73
frag24 4.1 aaalbbbb baaaaaaa 38 0.46 1.31
frag25 6.1 albbbbbb aaababab 25 0.14 1.42

Fragment RMSD Native Ground p1 ∆∆F TS
Å mesostring mesostring % kcal/mol kcal/mol

frag1 3.7 bbbbbb -aaaaa 50 0.71 1.20
frag2 3.9 bbbbba baaaaa 42 0.37 1.01
frag3 4.1 bbbaba -aaabb 37 0.82 1.51
frag4 2.6 babaab bb-aab 64 0.65 0.92
frag5 2.6 baabbb baaaa- 49 0.92 1.38
frag6 4.1 abbbbb bbb-aa 20 0.39 1.87
frag7 4.3 bbbbbb blaabb 20 0.28 1.56
frag8 3.6 bbbbbb baaaaa 10 0.00 1.82
frag9 3.5 bbbbab aaaaa- 36 0.43 1.41
frag10 3.1 bbabaa aaaaa- 34 0.56 1.58
frag11 0.5 abaaaa bbaaa- 51 1.10 1.34
frag12 3.0 aaaaaa bbaaa- 23 0.45 1.63
frag13 3.1 aaaaaa b-aabb 25 0.68 1.67
frag14 0.4 aaaaaa -aaaaa 73 1.21 0.80
frag15 3.1 aaaaaa aaaaaa 23 0.43 1.59
frag16 3.5 aaaaaa babaab 15 0.06 1.53
frag17 3.3 aaaaal bbbbbb 18 0.40 1.75
frag18 1.5 aaalbb ba-bbb 33 0.97 1.70
frag19 4.2 albbab bbbbbb 13 0.03 1.85
frag20 3.0 bbabbb bbbabb 16 0.01 1.62
frag21 4.7 abbbbb baaaab 36 0.99 1.56
frag22 1.9 bbbbaa baaaaa 11 0.14 1.68
frag23 2.1 bbaaal ba-aaa 59 0.87 1.06
frag24 3.0 aaalbb baaabb 18 0.18 1.62
frag25 3.8 albbbb aaaaab 24 0.20 1.45
frag26 3.9 bbbbbb aaaaa- 60 1.41 1.20

Table 2: Native and ground mesostring (see the text for definition on state a, b, and l), probability of ground
mesostring, free energy difference, entropy and RMSD of 6-mers in 1ns time window after 4 ns equalibration.
Bold indicates stable fragments.
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show data for different fragments at 4 ns from start of
simulation in 1 ns window. The lines in bold indicate sta-
ble structures. A key finding, consistent with that of Ho et

al is the persistence of substantial stable structure even in
such short peptides, studied here over a more extensive
set of peptides and over a systematic series of different

Table 4: Same as table 2, but for 10-mers.

Fragment RMSD Native Ground p1 ∆∆F TS
Å mesostring mesostring % kcal/mol kcal/mol

frag1 6.2 bbbbbbbaba aaaaaaaab- 43 0.82 1.43
frag2 6.1 bbbbbabaab bbababbbab 31 0.24 1.22
frag3 4.3 bbbabaabbb aaabbaabbb 36 0.66 1.42
frag4 5.3 babaabbbbb bblaaabbab 19 0.15 1.49
frag5 5.4 baabbbbbbb baaaalbba- 21 0.44 1.93
frag6 7.7 abbbbbbbbb babbbaaaaa 8 0.02 1.84
frag7 5.7 bbbbbbbbab bbaaaaaaaa 13 0.10 1.67
frag8 4.6 bbbbbbabaa baaaaaaaaa 30 0.23 1.30
frag9 4.7 bbbbabaaaa bbaaaaaaaa 18 0.49 1.86
frag10 3.9 bbabaaaaaa bbbaabbabb 26 0.39 1.57
frag11 4.3 abaaaaaaaa aaaaaaaabb 27 0.56 1.61
frag12 3.0 aaaaaaaaaa baaaaaabbb 35 0.42 1.23
frag13 5.3 aaaaaaaaaa bbbblbbabb 30 0.38 1.37
frag14 0.6 aaaaaaaaaa aaaaaaaaaa 51 0.84 1.10
frag15 5.3 aaaaaaaaal bbabblabbb 18 0.06 1.57
frag16 3.7 aaaaaaalbb bbbbaaalbb 19 0.37 1.61
frag17 3.3 aaaaalbbab abaabbabbb 21 0.75 1.94
frag18 5.4 aaalbbabbb bbbbaabbbb 16 0.15 1.94
frag19 5.8 albbabbbbb bbbbbabbbb 38 0.77 1.59
frag20 5.4 bbabbbbbaa babaaaaaaa 60 0.87 0.95
frag21 4.1 abbbbbaaal baaaaaaaaa 41 0.35 1.14
frag22 3.2 bbbbaaalbb bababaaaaa 37 0.37 1.14
frag23 3.8 bbaaalbbbb baaaaaaaaa 39 0.50 1.29
frag24 5.6 aaalbbbbbb baaaaaabba 27 0.06 1.30

Table 5: Same as table 2, but for 12-mers.

Fragment RMSD Native Ground p1 ∆∆F TS
Å mesostring mesostring % kcal/mol kcal/mol

frag1 8.4 bbbbbbbabaab bababaaaabba 32 0.63 1.49
frag2 5.0 bbbbbabaabbb baaabbbbabbb 30 0.32 1.49
frag3 4.3 bbbabaabbbbb aaabbaabbbbb 18 0.37 1.76
frag4 6.0 babaabbbbbbb bblaaabbabbb 38 0.63 1.39
frag5 7.3 baabbbbbbbbb bbbbbbbbbbbb 17 0.03 1.89
frag6 8.9 abbbbbbbbbab bbb-bbaaabbb 42 0.68 1.45
frag7 5.8 bbbbbbbbabaa babaaaaabbbb 33 0.78 1.62
frag8 5.1 bbbbbbabaaaa aaaaaaabbabb 33 0.50 1.38
frag9 4.7 bbbbabaaaaaa baaaaaabbaab 23 0.13 1.57
frag10 4.4 bbabaaaaaaaa babbaaaabbbb 42 0.13 0.91
frag11 5.8 abaaaaaaaaaa bbbaaabbbbab 15 0.36 1.68
frag12 5.7 aaaaaaaaaaaa bbabaaababb- 42 0.66 1.42
frag13 4.2 aaaaaaaaaaaa baaaabaaabba 12 0.02 1.66
frag14 5.6 aaaaaaaaaaal bbb-aaabbbbb 38 0.68 1.52
frag15 5.5 aaaaaaaaalbb bbbbbaabbbbb 15 0.02 1.67
frag16 4.1 aaaaaaalbbab bbbaaaababb- 45 0.95 1.43
frag17 5.6 aaaaalbbabbb bbbabbbb-aab 22 0.75 2.02
frag18 6.3 aaalbbabbbbb babbbbbbbaba 19 0.41 1.87
frag19 6.6 albbabbbbbaa bbbababbbbaa 13 0.25 1.93
frag20 5.6 bbabbbbbaaal babaaaaaaabb 24 0.28 1.49
frag21 5.5 abbbbbaaalbb bbbaaabaaabb 21 0.06 1.53
frag22 4.4 bbbbaaalbbbb babaaaabbaaa 40 0.17 0.94
frag23 5.0 bbaaalbbbbbb aabaaaaaaaaa 53 0.60 0.95
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chain lengths: in 27% of 6-mer fragments, 20% of 
8-mers, 17% of 10-mers and 30% of 12-mers. We classi-
fied the structures of stable fragments using the defini-
tions of Ho et al.31

Out of 98 simulated fragments, we found 22 that
have structural preferences. We found six structured 
6-mers each form a helical-turn, and one other forms a
reverse turn. Similarly, for 8-mers, three fragments for a
helical turn and one other forms a reverse turn. For 
10-mers, all but one is in a helical turn structure. The 
12-mers can form more complex structures, often a com-

bination of a helical-turn and reverse-turn. Only one of
the 12-mers has a stable helical structure. While it has
been generally supposed that peptides this short are un-
likely to have stable structure, our work is consistent
with the conclusions from the previous more limited
studies of Ho et al.

In general there are 3 places in protein G where we
find structured fragments: the N-terminal β-hairpin, the
helix, and the C-terminal β-hairpin. At the N-terminal, the
turn in the β-hairpin is predicted by the ground state of the
8-mer called frag4. For several other fragments, this turn
is among the highly populated structures. Within the he-
lix, we find two 6-mers and one 10-mer with very native-
like structure. Two 12-mers are also stable, but with non-
native structures. In the C-terminal β-hairpin, all our sta-
ble fragments adopt a helical-turn, the 8-mer of which is
the most stable. The isolated C-terminal β-hairpin has
been found experimentally to be stable,14 where this sta-
bility is reflected in the structural bias found in the peptide
fragments of the hairpin-turn. These structured fragments
also are consistent with a study of Minor and Kim,46 who
replaced the α-helix sequence with a sequence based on
the C-terminal hairpin. The mutant was able to fold into
the same topology, showing that there is a helical propen-
sity in the C-terminal hairpin. In this study we find heli-
cal-turns in both the α-helix and the turn of the C-terminal
hairpin, which demonstrates the interchangeability of
these two sequences in our simulations. Our 6-mers
frag10 and frag11 and our 10-mer frag14 all show highly
native-like helical structures, with very low RMSD to na-
tive and low entropy.

On figures 1–4 we plotted contact maps for native
protein G and stable fragments of different sizes. We
found a substantial number of stable fragments in the right
places and they predict at least some of the contacts cor-
rectly. We also see some stable fragments in the places
where native protein G does not have contacts. These tend
to be locations where the backbone is transitioning from
one structural element to another.

We also tested the proposition that keeping the five
best mesostrings for a given peptide, based on our en-
tropy and free energy analysis, might capture native-like
structures in the fragments. Results are shown in figures
5–8. Figure 5 shows a 10-mer helix for which all the top
conformations are native-like. In figure 6 we show struc-

Figure 2: Same as figure 1, but for 8-mers.

Figure 3: Same as figure 1, but for 10-mers.

Figure 4: Same as figure 1, but for 12-mers.
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Figure 5: Structures of 10-mer fragment 14. a) native structure in protein G, b) ground mesostring, c) 1st higher mesostring, d) 2nd higher
mesostring, e) 3rd higher mesostring and f) 4th higher mesostring. For each mesostring, we show the free energy and population.

Figure 6: Same as figure 5, only structures of 12-mer fragment frag22. This fragment is not stable.
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tures of a 12-mer in the C-terminal β-hairpin. Here, we
find a competition between helical-turn structures and
the correct hairpin. The helix population is about 40% of
all mesostrings, the hairpin is about 50% and there is a
small population of other conformations. In short, in this
case, by keeping the top 2 or 3 of our best conformers,
they have the potential to ultimately grow into the native
structure. Figures 7 and 8 show an 8-mer and 12-mer
from the N-terminal hairpin. In this case, all the top con-
formations form the correct hairpin. Out of our total of
98 simulated peptides, we find both the correct native
topology and structures that are less than 3 Angstroms
RMSD from the native in 3 6-mers (frag4, frag10 and
frag14), one 8-mer (frag4) and one 10-mer (frag14).
Other fragments meet one criterion or the other, but not
both. Hence, we find that these short physical simula-

tions have a significant ability to identify useful native-
like structures.

4. Conclusions

In this work, we have applied replica-exchange mo-
lecular dynamics using AMBER96 force field with the
GB/SA solvent model to simulate protein fragments 6–12
residues in length. Out of simulated 98 fragments, 22 were
structured. Despite the fact that the simulations are short in
time and are on peptides that are very short in length, nev-
ertheless, these physics-based computations are capable of
picking out some native-like structures. This may be useful
for simulations of protein folding kinetics, or for physics-
based native protein structure predictions.

Figure 7: Same as figure 5, only structures of 12-mer fragment frag4.
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Povzetek
V delu smo naredili ra~unalni{ke simulacije 98 majhnih peptidov dol`ine 6, 8, 10 in 12 aminokislinskih preostankov
proteina G. Iskali smo stabilne fragmente. Molekulsko dinamiko zamenjave replik smo izvajali s programom Amber 7.
Uporabili smo polje sil parm96 s posplo{enim Bornovim modelom topila (GB/SA). Ugotovili smo, da je dober kriterij
za dolo~evanje strukturiranih fragmentov konformacijska entropija in prosta energija posameznega stanja. Visoka razli-
ka proste energije med osnovnim in prvim vi{jim stanjem ter nizka entropija sta zna~ilna za strukturirane peptide.
Veliko strukturiranih peptidov ima strukture podobne nativni. Simulacije kraj{ih peptidov so uporabne za ugotavljanje
mest, kjer se protein pri~ne zvijati, in lahko pripomorejo k bolj{emu napovedovanju strukture proteinov.


