Scientific paper

Group Theory for Tetramethylethylene, II

Mohammad Reza Darafsheh¹*, Ali Moghani² and Soroor Naghdi Sedeh²

¹ School of Mathematics, College of Science, University of Tehran, 14174 Tehran, Iran
² Department of Color Physics, Institute for Colorant, Paint and Coating (ICPC), 16765 Tehran, Iran

* Corresponding author: E-mail: darafsheh@ut.ac.ir

Received: 07-05-2008

Abstract

The matured and unmaturated groups have been introduced by S. Fujita who used them in the markaracter table and the Q-conjugacy character table of a finite group. Fujita introduced more concise forms called the Q-conjugacy characters with integer-valued of the irreducible characters of finite groups and applied his results in this area of research to enumerate isomers of molecules. In this paper using GAP program all integer-valued characters of the full non-rigid group (f-NRG) of tetramethylethylene (2,3-dimethylbut-2-ene) is calculated by the Q-conjugacy relationships. It is shown that this group has 29 dominant classes (similarly, Q-conjugacy characters) such that 16 of them are unmaturated (similarly, Q-conjugacy characters such that they are the sum of two irreducible characters). Then the markaracter table and Q-conjugacy character table of the f-NRG of tetramethylethylene are derived for the first time.

Keywords: Full non-rigid group, markaracter table, Q-conjugacy character table, tetramethylethylene (2,3-dimethylbut-2-ene).

1. Introduction

In order to develop new methods of combinatorial enumeration of isomers, some relationship between character tables containing characters for irreducible representations and mark tables containing marks for coset representations have been clarified by S. Fujita who proposed not only markaracter tables, which enable us to discuss characters and marks on a common basis, but also Q-conjugacy character tables, which are obtained for finite groups. The enumeration of chemical compounds has been accomplished by various methods, but the Pólya-Redfield theorem has been a standard method for combinatorial enumerations of graphs and chemical compounds. A dominant class is defined as a disjoint union of conjugacy classes that corresponds to the same cyclic subgroup, which is selected as a representative of conjugate cyclic subgroups. Let G be a finite group and h₁, h₂ ∈ G. We say h₁, h₂ are Q-conjugate if there exists t ∈ G such that t⁻¹ <h₁> t = <h₂>. The Q-conjugacy is an equivalence relation on G and generates equivalence classes which are called dominant classes, i.e. the group G is partitioned into dominant classes as follows: G = K₁ + K₂ + ... + Kₖ in which Kᵢ corresponds to the cyclic (dominant) subgroup Gᵢ selected from a non-redundant set of cyclic subgroups of G denoted by SCG.¹⁻¹⁴

A molecule is said to be non-rigid if there are several local minima on the potential energy surface easily surmountable by the molecular system via a tunneling rearrangement. A non-rigid molecule typically possesses several potential valleys separated by relatively low energy barriers, and thus exhibits large amplitude tunneling dynamics among various potential minima. Because of this deformability, the non-rigid molecules exhibit some interesting properties of intramolecular dynamics, spectroscopy, dynamical NMR etc., all of which can be interpreted resorting to group theory. Group theory is one of the most powerful mathematical tools in quantum chemistry and spectroscopy. It can predict, interpret, and simplify complex theories and data. Group theory is the best formal method to describe the symmetry concept of molecular structures. Group theory for non-rigid molecules is becoming increasingly relevant and its numerous applications to large amplitude vibrational spectroscopy of small organic molecules are described in the literature.¹⁵⁻¹⁹ The molecular symmetry group of a non-rigid molecule was...
first defined by Longuet-Higgins20 although there have been earlier works that suggested the need for such a framework by Hougen.21 Bunker and Papoušek22 extended the definition of the molecular symmetry group to linear molecules using an extended molecular symmetry. The operations of the molecular symmetry group and the three-dimensional rotation group are used together to treat the symmetry properties of molecules in electric and magnetic fields by Watson.23 The complete set of the molecular conversion operations that commute with the nuclear motion operator will contain overall rotation operations that describe a molecule rotating as a whole, and intramolecular motion operations that describe molecular moieties moving with respect to the rest of the molecule. These operations form a group which is called the full non-rigid molecule group (f-NRG) by Smeyers.24 Calculating the f-NRGs using wreath product formalism was first introduced by Balasubramanian. He also computed the character table of non-rigid groups under consideration.25–27

The present study investigates the Q-conjugacy character tables of tetramethylethylene (Figure 1), the f-NRG of which has been previously introduced.28 In order to derive all of its integer-valued characters, it is shown that its unmaturred group has 16 row- and column-reductions in its character table. The reader is encouraged to consult references26–32 for background materials. The notation we use is standard and mainly taken from references33–34.

For any \(g \in G \), the set of all permutations \(G/(H)_g = \{ Hg_1, Hg_2, \ldots, Hg_u \} \) constructs a permutation representation of \(G \), which is called a coset representation of \(G \) by \(H \) denoted by \(G/H \). The degree of \(G/H \) is \(|G|/|H| \), where \(|G| \) is the number of elements in \(G \). Obviously, the coset representation \(G/H \) is transitive, i.e. has just one orbit.4 To denote the consecutive classes of elements of order \(n \), for example if an element \(g \) has order \(n \), then its class is denoted by \(n_g \), where \(x \) runs over the letters \(a, b, \) etc. If \(M \) is a normal subgroup of \(G \), then \(M \) is another subgroup of \(G \) such that \(M \cap K = \{ e \} \) and \(G = MN = \langle M, N \rangle \), then \(G \) is called a semi direct product of \(N \) by \(M \) which is denoted by \(N : M \).

Let \(K \) and \(H \) be groups and suppose \(H \) acts on the set \(G \). Then the wreck product of \(K \) by \(H \), denoted by \(K \rtimes H \), is defined to be the semi direct product \(K^H : \langle f, g \rangle \) such that \(K^H = \{ f \} : f : \Gamma \rightarrow K \}, \) see references33–34 for more details.

Let \(C \) be a \(u \times u \) matrix of character table of \(G \). Then, \(C \) is transformed into a more concise form called the Q-conjugacy character table that we denote its \(s \times s \) matrix by \(C^Q \) as follows: If \(u = s \), then \(C = C^Q \) i.e. \(G \) is a maturated group. Otherwise \(s < u \), for each \(G_i \in SC \)-SG (the corresponding dominant class \(K_i \) set \(t_i = m(G_i) / \phi(\ell(G_i)) \) where \(m(G_i) = |N_{\Gamma}(G_i)|/|C_{\Gamma}(G_i)| \) (called the maturity discriminant), \(\phi \) is the Euler function and finally \(N_{\Gamma}(G_i) \) and \(C_{\Gamma}(G_i) \) denote the normalizer and centralizer of \(G_i \) in \(G \), respectively for \(i = 1, \ldots, s \). If \(t_i = 1 \) then \(K_i \) is exactly a conjugacy class so there is no reduction in row and column of \(C \), but if \(t_i > 1 \) then \(K_i \) is a union of \(t_i \)-conjugacy classes of \(G \) (i.e. reduction in column) therefore the sum of \(t_i \) rows of irreducible characters via the same degree in \(C \) (reduction in rows) gives us a reducible character which is called the Q-conjugacy character with integer-valued.

It has been shown that the f-NRG of tetramethylethylene is a wreath product of the cyclic group of order three with direct product of two copies of cyclic group of order two,29 i.e. \(C_3 \sim (C_2 \times C_2) \) as follow:

Referring to Figure 1, the group of each \(CH_3 \) at the four corners of the framework is given in terms of permutations as follows: \(A_1 = \langle (1, 2, 3) \rangle, A_2 = \langle (4, 5, 6) \rangle, A_3 = \langle (7, 8, 9) \rangle, A_4 = \langle (10, 11, 12) \rangle \), where \(A_1, A_2, A_3 \) and \(A_4 \) are the symmetry groups of the \(CH_3 \) whose carbon atom is marked as 13, 14, 15 and 16, respectively. Let \(T \) be the f-NRG of tetramethylethylene, therefore \(T \) has the following structure: \(T = \langle A_1 \times A_2 \times A_3 \times A_4 \rangle : V \), where \(V = \{ \text{id}, (13, 14)(15, 16)(a, b), (13, 16)(14, 15)(a, b), (13, 15)(14, 16)(a, b) \} \) is the Klein’s four group, so it is obvious that every element of \(T \) is as a vector \((a_1, a_2, a_3, a_4, v) \) such that \(a_i \in G_i \) and \(v \in V \), i.e. \(T \) can be written in terms of wreath product \(T = C_3 \rtimes (C_2 \times C_2) \). Now, the computations of the symmetry properties of molecules were carried out with the aid of GAP SYSTEM,35 a group theory software package which is free and extendable. We run the following

Figure 1. Geometry of Tetramethylethylene (2,3-Dimethylbut-2-ene)
Table 1: The Markaracter Table for Tetramethylethylene

<table>
<thead>
<tr>
<th>Γ</th>
<th>G_1</th>
<th>G_2</th>
<th>G_3</th>
<th>G_4</th>
<th>G_5</th>
<th>G_6</th>
<th>G_7</th>
<th>G_8</th>
<th>G_9</th>
<th>G_{10}</th>
<th>G_{11}</th>
<th>G_{12}</th>
<th>G_{13}</th>
<th>G_{14}</th>
<th>G_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(G_1)</td>
<td>324</td>
<td>0</td>
</tr>
<tr>
<td>T(G_2)</td>
<td>162</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>T(G_3)</td>
<td>162</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>T(G_4)</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>T(G_5)</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>T(G_6)</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_7)</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_8)</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_9)</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{10})</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{11})</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{12})</td>
<td>108</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{13})</td>
<td>108</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{14})</td>
<td>108</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{15})</td>
<td>108</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>T(G_{16})</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{17})</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{18})</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{19})</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{20})</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{21})</td>
<td>54</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{22})</td>
<td>54</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{23})</td>
<td>54</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{24})</td>
<td>54</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{25})</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{26})</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{27})</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{28})</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T(G_{29})</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Darafsheh et al.: *Group Theory for Tetramethylethylene, II* ...
Table 2: The Q-Conjugacy Character Table for Tetramethylethylene

<table>
<thead>
<tr>
<th>CQ</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
<th>D_5</th>
<th>D_6</th>
<th>D_7</th>
<th>D_8</th>
<th>D_9</th>
<th>D_10</th>
<th>D_11</th>
<th>D_12</th>
<th>D_13</th>
<th>D_14</th>
<th>D_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>1</td>
</tr>
<tr>
<td>T_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>T_3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>T_4</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>T_5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_6</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>T_7</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>T_8</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_10</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_12</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>T_13</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>T_14</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_15</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_16</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>T_17</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>T_18</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_19</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_20</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_21</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_22</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_24</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_25</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_26</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_27</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_28</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>T_29</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Darafsheh et al.: *Group Theory for Tetramethylethylene, II* ...
program at the GAP prompt to compute the mark table, the character table and the set SCGS of the f-NRG of tetramethylethylene.

LogTo("Calculations.txt");
C2:=CyclicGroup(2);
D:=DirectProduct(C2,C2);
C3=CyclicGroup(3);
T:=WreathProduct(C3,D);
Char:=CharacterTable(T);
Order(T),IsPermGroup(T);
U:=ConjugacyClassesSubgroups(T);
Sort("U");
mark:=TableOfMarks(T);
V:=List(ConjugacyClassesSubgroups(T),x->Elements(x));
Len:=Length(V); y:=f;
for i in [1..Len] do
if IsCyclic(V[i]) then Add(y,i);
fi;
od;
Display(Char);
Display(mark), "in"; Print("mark", "in");
Display(V, "in"); Print("V", "in");
Print(" calculations.txt", "in");
LogTo();

After running the program, the following elements belong to the non-redundant set of cyclic subgroups of T:

- $G_1 = 1a$, $G_2 = <(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)>$, $G_3 = <(1, 10)(2, 11)(3, 12)(4, 7)(5, 6)(8, 9)(10, 11, 12)>$, $G_4 = <(1, 4)(2, 5)(3, 6)(7, 10)(8, 11)(9, 12)>$, $G_5 = <(1, 2, 3)(4, 5, 6)(7, 11, 12)>$, $G_6 = <(1, 2)(3, 4, 5, 6)(7, 8, 9)(10, 12, 11)>$, $G_7 = <(1, 2, 3)(4, 6, 5)(7, 8, 9)(10, 11, 12)>$, $G_8 = <(7, 8, 9)(10, 11, 12)>$, $G_9 = <(4, 5, 6)(7, 9, 8)>$, $G_{10} = <(4, 5, 6)(7, 9, 8)>$, $G_{11} = <(4, 5, 6)(10, 12, 11)>$, $G_{12} = <(4, 5, 6)(7, 8, 9)>$, $G_{13} = <(7, 8, 9)(10, 11, 12)>$, $G_{14} = <(4, 5, 6)(10, 11, 12)>$, $G_{15} = <(4, 5, 6)(7, 9, 8)(10, 11, 12)>$, $G_{16} = <(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{17} = <(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{18} = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{19} = <(1, 10, 11, 12)>$, $G_{20} = <(4, 5, 6)(7, 9, 8)(10, 11, 12)>$, $G_{21} = <(1, 2, 3)(4, 5, 6)(7, 9, 8)(10, 11, 12)>$, $G_{22} = <(1, 2, 3)(4, 5, 6)(7, 9, 8)(10, 11, 12)>$, $G_{23} = <(1, 2, 3)(4, 5, 6)(7, 9, 8)(10, 11, 12)>$, $G_{24} = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{25} = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{26} = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{27} = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)>$, $G_{28} = <(4, 5, 6)(10, 11, 12)>$, $G_{29} = <(4, 5, 6)(7, 9, 8)(10, 11, 12)>$, $G_{30} = <(4, 5, 6)(7, 9, 8)(10, 11, 12)>$.

See M^C the markaracter table of tetramethylethylene which is derived from $M_{174} \times 174^4$ the mark table of T in Table 1. Besides, we can see that T has exactly 29 dominant classes as follow:

- $D_1 = 1a$, $D_2 = 2a$, $D_3 = 2b$, $D_4 = 2c$, $D_5 = 3aU3b$, $D_6 = 3cU5e$, $D_7 = 3d$, $D_8 = 3fU3n$, $D_9 = 3g$, $D_{10} = 3hU3q$, $D_{11} = 3iU3s$, $D_{12} = 3jU3r$, $D_{13} = 3k$, $D_{14} = 3lU3p$, $D_{15} = 3mU3o$, $D_{16} = 3nU3z$, $D_{17} = 3oU3y$, $D_{18} = 3p$, $D_{19} = 3q$, $D_{20} = 3r$, $D_{21} = 6aU6b$, $D_{22} = 6cU6e$, $D_{23} = 6d$, $D_{24} = 6fU6g$, $D_{25} = 6hU6j$, $D_{26} = 6i$, $D_{27} = 6kU6l$, $D_{28} = 6mU6o$, $D_{29} = 6n$ such that the dominant classes D_i for $i \in \{5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 21, 22, 24, 25, 27, 28\}$ are unmaturated which shows 16 column-reductions (similarly, row-reductions) in C_{35a45}, the character table of $T = C_3 \times (C_2 \times C_2)$ in the reference. There are sixteen unmaturated integer-valued characters in C_{3} the Q-conjugacy character table of T with the sum of two irreducible characters via same degrees. All integer-valued characters of tetramethylethylene are presented in Table 2.

3. Conclusions

In this paper using GAP program all integer-valued characters of the f-NRG of tetramethylethylene are calculated by the Q-conjugacy relationships. It is shown that this group has 29 dominant classes (similarly, Q-conjugacy characters) such that 16 of them are unmaturated (similarly, Q-conjugacy characters such that they are the sum of two irreducible characters) and the complete Q-conjugacy character table and the markaracter table of this group is computed successfully. The derived markaracter table and Q-conjugacy character table would also be valuable in other applications such as in the context of chemical applications of graph theory and aromatic compounds. Furthermore, we introduce the following conjecture.

Conjecture. Let G_i be a finite group for $i = 1, \ldots, n$ and $W = G_1 \sim G_2 \sim \ldots \sim G_n$. If there exists $k \in \{1, \ldots, n\}$ such that G_k is an unmaturated group, then W is an unmaturated group too.

4. References

Zrele in nezrele grupe je S. Fujita vpeljal v tabele markarakterjev in Q-konjugiranosti končnih grup. Fujita je vpeljal tudi bolj zgoščene oblike, imenovane Q-konjugacijski karakterji s celoštevilcami vrednostmi nereducibilnih karakterjev končnih grup ter uporabil svoje rezultate za osevilčenje izomerov molekul.