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Abstract
The distribution of ions between charged cylindrical micropores modeling an adsorbing material and a bulk electrolyte
was calculated. For this purpose the Grand Canonical Monte Carlo method and the method based on solution of the non-
linear Poisson-Boltzmann equation were utilized. The focus was on the effect of the solvent, characterized here merely
by its dielectric constant. The Donnan exclusion coefficient and mean activity coefficient of an electrolyte confined in a
microcapillary were calculated as functions of the electrolyte concentration and the dielectric constant of the solvent.
The exclusion coefficient was found to decrease with increasing electrolyte concentration and with decreasing dielectric
constant of the solvent. In other words, the desalination mechanism becomes very inefficient in solvents with dielectric
constant lower than that of water. In comparison with Monte Carlo simulations the Poisson-Boltzmann theory was able
to predict correct trends for the Donnan exclusion coefficient, but it grossly overestimated Monte Carlo results. The mi-
croscopic picture which emerged on the basis of the distributions of small ions in the microcapillary was helpful in ex-
plaining these results.

Keywords: Electrolytes, microcapillary, dielectric constant of solvent, Donnan equilibrium, Monte Carlo simulation,
Poisson-Boltzmann theory

1. Introduction

Material containing charged microcapillaries sur-
rounded by a low-molecular weight electrolyte usually
contains a different concentration of electrolyte than the
surrounding equilibrium solution1,2 (for a review of earlier
works see3). The ability of charged microporous material
to exclude electrolyte forms the basis of important separa-
tion processes such as ultrafiltration and reverse osmosis.
For this reason the problem of electrolyte exclusion from
porous media continues to be of interest to many re-
searchers.4–222 In these studies the electrokinetic problem
is essentially reduced to determination of the ionic profile
inside the microcapillary. In most such studies the solu-
tion of the nonlinear Poisson-Boltzmann equation, despite
its well known defficiency (see, for example3,7), is utilized
for this purpose. Knowledge of the ionic distribution with-
in the charged microporous material therefore represents

the first step toward better understanding and design of
separation processes. Note that studies of this phenome-
non are important for the biological sciences as well.23

In a series of papers we investigated the equilibrium
distribution of ions, most often modeled as charged hard
spheres in a dielectric continuum representing the solvent,
between a charged cylindrical microcapillary and the ex-
ternal (bulk, isotropic) electrolyte.24–30 The Grand Cano-
nical Monte Carlo method was applied25 to test the theory
based on the numerical solution of the non-linear Poisson-
Boltzmann equation. The results indicate that the latter
approximation is reasonably accurate for a +1:–1 elec-
trolyte present in the microcapillary. Qualitative and
quantitative differences between the two types of calcula-
tion were noticed for +2:–2 electrolytes. We have shown
in one of the more recent papers29 that a modified Poi-
sson-Boltzmann equation yields improved agreement
with the simulation results. The computer simulations and
Poisson-Boltzmann theory were extended to treat asym-
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metric +1:–2 and +2:–1 electrolytes.27 The model was fur-
ther generalized28 to mixtures of +2:–1/+1:–1 in order to
account for the ion-selectivity effects in such mixtures. In
both cases the results were in qualitative or semi-quantita-
tive agreement with experimental data. More recently
computer simulations of a strongly coupled system, where
the model microcapillary was in equilibrium with a +3:–3
electrolyte, were presented.30 In agreement with some ex-
perimental data4–6,31 we found that in the case of multiply
charged counterions the strong ion-ion correlation may
yield a ”negative rejection”, that is, an increase of the
electrolyte concentration in the micropore. Boda and
coworkers32 performed simulations of electrolytes at an
electrode. They found that negative adsorption can occur
at low temperatures (for high ionic coupling). This finding
is at variance with the result predicted by the traditional
Poisson-Boltzmann theory. Note, however, that a modi-
fied Poisson-Boltzmann equation33,34 which explicitly in-
cludes the ion-ion correlations, correctly predicts this ef-
fect. The dielectric constant of the solvent in the calcula-
tions presented in this paper plays a similar role as tem-
perature in the aforementioned studies.32–34

In studies presented so far we independently varied
the main parameters of the model such as the charge densi-
ty and radius of the microcapillary, and the concentration
and composition of the invading electrolyte. All these in-
vestigations apply to aqueous solutions at 298 K, and no
calculations for other conditions were published. An impor-
tant model parameter, the influence of which has not been
yet explored, is the dielectric constant of the solvent. Note
that in continuum-solvent models all the properties of the
solvent are subsumed in its dielectric constant. By varying
this quantity we can influence the Coulomb interactions in
the external (bulk) electrolyte, as well as its interaction with
the surface charge. By decreasing the dielectric constant of
the solvent, we equally increase the ion-ion and ion-capil-
lary interactions. For this reason the influence of the solvent
on the equilibrium distribution of electrolyte should be dif-
ferent than, for example, the influence of the variation of
the surface charge density. The solvent effect as brought
about by the dielectric constant variation therefore deserves
a separate evaluation. In addition, the accuracy of the
Poisson-Boltzmann approximation has not yet been tested
under these conditions and this is another goal of present
study. Since no experimental data is available for ionic ad-
sorption from solvents with lower dielectric constant than
water, the results presented here provide useful estimates of
the dielectric constant effects on the electrolyte adsorption.

2. Methods of Calculation

2. 1. Model

The interaction potential between two ions of spe-
cies i and j separated by a distance rij is given by

(1)

where aij = (ai + aj)/2, with ai being the diameter of a par-
ticle of type i. In this paper we treat only symmetric elec-
trolytes so ai = aj = a. We define the Bjerrum length as

(2)

where ∈0 is the vacuum permittivity, ∈r is the relative per-
mittivity of the system, zi is the valency of ion type i, and
e0 is the proton charge. The fixed charge q is assumed to
be smeared uniformly over the inner surface of the capil-
lary with charge density σ

(3)

where Rc (= R + a/2) and h are the radius and length, re-
spectively, of the microcapillary (cf. Fig. 1, of Ref.29). In
this model the centres of the ions can approach up to the
distance a/2 (ionic radius) from the charged surface.

2. 2. The Poisson-Boltzmann Equation

The Poisson equation, which relates the electrostatic
potential ψ(r) to the charge density ρe(r), is the fundamen-
tal equation of this approach. In cylindrical geometry this
equation reads

(4)

where ρe(r) at distance r is given by:

(5)

Each ρi(r) can be approximated as:

(6)

where i can be either +, or –, e0 is the elementary charge,
∈0∈r the dielectric constant and β = (kBT)–1. Further,
ρi(0) is the number density of the ionic species i at the
position r = 0 (see Fig. 1, of Ref.29), where the electro-
static potential ψ(r) is chosen to be zero. Note that the
condition of electroneutrality may not necessarily be sat-
isfied locally10,11 (at r = 0, ρ+(0) ≠ ρ–(0)), though of
course is satisfied globally within the infinite microcap-
illary. An analytical solution for this differential equa-
tion only exists for |e0zi|βψ� 1, and the equations above
need to be solved numerically. The boundary conditions
are prescribed by the Gauss statement (for details see,
Ref.24).
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2. 3. Grand Canonical Monte Carlo
Approach

The Poisson-Boltzmann theory treats the ions as
pointlike charges and ignores their mutual correlation.
This may lead to substantial errors when divalent or triva-
lent ions are present in the system.3,24,26,29,30 Computer
simulations are free of this approximation. The Grand
Canonical Monte Carlo method proved to be very useful
in such calculations24,35 and has been used many times be-
fore, most recently in Ref.36 where the details of the
method were outlined. The advantage of this approach is
that by sampling at constant chemical potential the bulk
phase is defined unambiguously. To calculate the Donnan
exclusion coefficient Γ as a function of cb, we need to
know the mean activity coefficient, γ b

±, of the equilibrium
bulk electrolyte at concentration cb. This information can
be obtained by a separate Grand Canonical Monte Carlo
(GCMC) computer simulation of an isotropic electrolyte
or from the solution of the hypernetted-chain integral
equation for such a system. As many times before,37 we
used the latter method to calculate  γ b

± in conjunction with
the approximate expression proposed by Belloni.38

3. Numerical Results
In the present study the following values of model

parameters were used: a = 0.425 nm, R = 3.825 nm, σ =
0.0711 As/m2 and LB was varied from 0.714 nm over
1.428 nm and 2.142 nm to 2.856 nm. Experimentally the
variation of the dielectric constant (and therefore LB) can
in this range be obtained by mixing water with 1,4-diox-
ane (see, for example, Ref.39–44).

First in Table 1 we present the results for the loga-
rithm of the mean-activity coefficient of bulk electrolyte,
ln γ b

±, as obtained from the HNC calculations.38 This quan-
tity is needed as input to the Grand Canonical Monte
Carlo simulation. The calculations apply to five different
concentrations of bulk electrolyte in the range from 0.025
to 0.200 mole/dm3. The accuracy of the integral-equation
results for LB = 2.156 nm was checked against the GCMC
calculation. The agreement between the integral-equation
theory based on the HNC approximation and the Grand
Canonical Monte Carlo simulation is very good in this

range of parameters so only the HNC results are tabulated
here.

Accurate measurements of the molal mean activity
coefficients of NaCl in dioxane-water mixtures were pro-
vided by Dolar and Be{ter.41 Our calculations agree quali-
tatively with the measured data; the mean activity coeffi-
cient γ b

± decreases sharply with increasing LB, that is with
increasing percentage of 1,4-dioxane in mixture.

3. 1. Exclusion Coefficient

The Donnan exclusion coefficient, which is the prin-
cipal result of this study, is defined as:

(7)

where cb is the concentration of co-ions in the bulk elec-
trolyte solution and < c > their average concentration in
the microcapillary. The coefficient Γ reflects how much of
the electrolyte (co-ions) is ”rejected” by a charged micro-
capillary. In most cases Γ > 0; if the majority of the co-
ions are expelled from the microcapillary Γ approaches 1.

The GCMC results for the exclusion coefficient Γ as
a function of cb are shown in Fig. 1. As we see from this
figure Γ decreases with increasing electrolyte concentra-

cb/(mole/dm3) LB/nm = 0.714 LB/nm = 1.428 LB/nm = 2.142 LB/nm = 2.856
0.025 0.1452 0.4106 0.7536 1.299
0.050 0.1852 0.5231 0.9436 1.431
0.100 0.2267 0.6466 1.151 1.721
0.150 0.2480 0.7199 1.228 1.896
0.200 0.2595 0.7699 1.365 2.020

Tabele I: Calculated37,38 negative logarithm of the mean–activity coefficient of bulk electrolyte, –ln γ b
±, as

a function of the electrolyte concentration cb at different values of LB/nm.

Fig. 1: GCMC results for the exclusion coefficient Γ as a function
of the external electrolyte concentration. From top to bottom LB =
0.714 nm (water at 298 K), 1.428 nm, 2.142 nm and 2.856 nm.

16 Vlachy-25-03-08.qxd.qxp  10.12.2008  18:53  Page 817



818 Acta Chim. Slov. 2008, 55, 815–821

Vlachy:  The Distribution of Ions between a Bulk Electrolyte ...

tion cb, as also with increasing value of LB (decreasing di-
electric constant of the solvent). In one case, for cb = 0.2
mol/dm3, we calculated Γ for LB = 0.357 nm, that is for a
dielectric constant larger than that of water. The result for
Γ was 0.58 under this condition. The concentration de-
pendence is relatively easy to understand; the decrease in
Γ (increase in < c >) is due to the increased screening of
the surface charges by electrolyte ions at higher concen-
tration. The same functional dependence has been ob-
served before (see, Fig. 4 of Ref.27).

It seems to be more difficult to explain the LB de-
pendence presented in the same figure. For this reason it is
instructive to re-visit some of the earlier results. In one of
the preceding contributions27 we examined the behaviour
of the exclusion coefficient for microcapillaries of various
charge density σ (see Eq. 3). As shown in Fig. 3 of Ref.27,
the Γ coefficient for solutions with monovalent counteri-
ons increases (see also Table I of25) with increasing charge
density and it levels off for higher σ values. The initial in-
crease is due to the increased ”coupling” between the
charged inner surface of the microcapillary and elec-
trolyte ions. The ion-surface interaction is proportional to
σ, while the ion-ion ”coupling” (see Eq. 1) does not
change. Notice, however, that by increasing σ we also in-
crease the concentration of counterions in the microcapil-
lary. The ”saturation” in Γ as seen in the GCMC and
Poisson-Boltzmann results may be attributed to increased
screening due to the increased concentration of the invad-
ing electrolyte.

Now consider the situation where monovalent
counterions in the system are replaced by divalent ones.
In such a case a significant decrease of Γ is observed, as
inferred by comparing Fig. 4 of Ref.27 with Fig. 7 of the
same paper. In general, by replacing a +1:–1 electrolyte
by a +2:–2 electrolyte the ion-ion interaction is increased
fourfold while the ion-surface interaction only twofold.
The strong ion-ion correlation between the divalent coun-

terions causes the exclusion coefficient to decrease in
comparison with the case of a +1:–1 electrolyte.3,25,27

Here the situation of interest is the one where by
changing the solvent we decrease the dielectric constant
(and accordingly increase LB) in the model system. In
such a case the strength of the ion-ion and ion-surface in-
teractions both change proportionally to LB. This pro-
duces qualitatively the same effect as an increase of the
inter-ionic correlation in solutions with divalent counteri-
ons described above. We will discuss this issue further in
connection with the ionic distributions presented in Fig. 6
and 7. Notice that for the value of charge density σ studied
here, the counterion concentration, needed to neutralize
the surface charge, in most cases exceeds the co-ion con-
centration.

The simplest estimate of capillary electrolyte rejec-
tion follows from the classical work of Donnan (see, for
example, Ref.,39 p. 410). The assumptions of the theory
are the following: i) ion activities inside and outside
(bulk) the microcapillary are equal to their concentrations;
ii) the electroneutrality condition is satisfied in both the
inside and outside solution. As shown in several pa-
pers28,36 the approach is at best only qualitatively correct.
The main deficiency of the classical theory is that it can-
not account for different LB values; in other words it re-
turns the same result regardless of the value of the dielec-
tric constant of the solvent. We also need to say that this
simple approach provides the correct trend for the concen-
tration dependence of Γ.

A considerably more accurate approach is provided
by the solution of the Poisson-Boltzmann equation (see,
for example,3). Once the mean electrostatic potential is
obtained from Eq. 4 the concentration < c > of the ab-
sorbed electrolyte and the coefficient Γ can be easily cal-
culated. These results are shown in Fig. 2, which parallels
Fig. 1, except that all the results were obtained by the
Poisson-Boltzmann theory. The exclusion coefficient is

Fig. 2: Poisson-Boltzmann results for the exclusion coefficient Γ as
a function of the external electrolyteconcentration; legend as for
Fig. 1

Fig. 3: GCMC results for the Y = γ± / γ b
± ratio as a function of the

external electrolyte concentration. From top to bottom LB = 0.714
nm, 1.428 nm, 2.142 nm and 2.856 nm.
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plotted as a function of concentration and for four differ-
ent values of the Bjerrum length LB. By comparing Fig 2
(Poisson-Boltzmann result) with Fig. 1 (Grand Canonical
Monte Carlo data) we notice a qualitative agreement be-
tween the two calculations. A closer inspection of data re-
veals that for the values of the model parameters studied
here, the Poisson-Boltzmann theory overestimates the ex-
clusion coefficient. As expected, the discrepancies in-
crease with increasing strength of the interaction, as re-
flected in the Bjerrum length.

3. 2. Mean Activity Coefficient 
of a Confined Electrolyte
It is of some interest to present numerical results of

the Grand Canonical Monte Carlo approach and the
Poisson-Boltzmann theory for the mean activity coeffi-
cient of the electrolyte in such microcapillaries. Note that

according to the approximation inherent to the Donnan
approach, the mean activities of the electrolytes in the in-
side and outside solution are the same, γ± = γ b

±.
Here in Fig. 3 and 4 we present the mean activity co-

efficient ratio γ±/γ b
± as obtained by the two numerical

methods. Again we notice the same trends; the mean ac-
tivity coefficients ratio increases with increasing concen-
tration of the external electrolyte. The Poisson-Boltzmann
calculation yields γ±/γ b

± values which are too high in com-
parison with the machine calculations. The disagreement
between the two types of calculation increases with in-
creasing coupling, i.e. with decreasing value of the dielec-
tric constant of the solvent.

3. 3. Ionic Distributions

In this section we present local distributions of ions,
c(r/a), which may help us in understanding the exclusion

Fig. 4: Poisson-Boltzmann calculation results for the Y = γ± / γ b
± ra-

tio as a function of the external electrolyte concentration; legend as
for Fig. 3

Fig. 5: Monte Carlo calculation results for ionic distributions inside
a microcapillary; counterions (+), co-ions (�), cb = 0.2 mole/ dm3,
LB = 0.714 nm.

Fig. 6: Monte Carlo simulation results for ionic distributions inside
a microcapillary; LB = 2.856 nm other parameters as for Fig. 5

Fig. 7: Monte Carlo (symbols) and Poisson-Boltzmann (lines) re-
sults for the co-ion distributions inside a microcapillary; LB = 0.714
nm (+; lower curve), LB = 2.856 nm (∈; upper curve) other param-
eters as for Fig. 5.
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coefficient data presented above. In Fig. 5 we present the
counterion (+) and coion (•) distributions in the microcap-
illary. The x-axis, r/a, has its origin in the middle of the
microcapillary. The results in Fig. 5 apply to LB = 0.714
nm and those plotted in Fig. 6 to LB = 2.856 nm: the exter-
nal electrolyte concentration was 0.2 mole/dm3 in both ex-
amples. In the latter example of higher coupling there is a
much stronger accumulation of counterions next to the
charged surface of the microcapillary. This in turn affects
the distribution of co-ions, as is more clearly presented in
Fig. 7, discussed next.

In comparison with the Poisson-Boltzmann calcu-
lation we only focus on the co-ion-surface distribution,
which in our view most clearly explains the behaviour of
the exclusion coefficient. As a consequence of the accu-
mulation of counterions next to the surface of the micro-
capillary and the strong electrostatic coupling between
counterions and co-ions for LB = 2.856 nm, there is an
increased concentration of co-ions in the next layer
(overcharging). The Monte Carlo distribution of co-ions
for LB = 2.856 nm has a noticeable peak at r/a ≈ 7.8. No
such peak can be observed for lower couplings; at LB =
0.714 nm, the co-ion distribution is monotonic. These
kinds of co-ion distributions have previously been ob-
served in solutions with divalent and trivalent counteri-
ons.25,30

Fig. 7 also reveals the source of the discrepancy be-
tween the mean-field (Poisson-Boltzmann) theory and
essentially exact computer simulations. The ionic distri-
butions calculated via the Poisson-Boltzmann theory in
this figure are shown by lines. As we can see, the
Poisson-Boltzmann equation predicts the co-ion profiles
to be monotonic in both cases. This is another example
showing the deficiency of the mean-field theory, which
does not account properly for the ion-ion correlations in
the electrical double layer. These correlations yield an in-
creased concentration of co-ions in the microcapillary
and lead to a significant decrease of the Donnan exclu-
sion coefficient, as indicated in Fig. 1. In the case of mul-
tivalent counterions the effect may be so strong that it ac-
tually yields negative Γ values, as shown theoretically in
Ref.30 This effect also causes the Poisson-Boltzmann pre-
dictions of Γ to be too high, and increasingly less accu-
rate for higher LB values.

4. Conclusions
The mean activity ratio γ±/γ b

± of an electrolyte
confined in a microcapillary versus the bulk electrolyte
of the same type, decreases with increasing strength of
the interaction, measured by the magnitude of the
Bjerrum length LB. The Poisson-Boltzmann calcula-
tions are in qualitative agreement with the Grand
Canonical Monte Carlo data, but the Poisson-
Boltzmann values for γ± are considerably too high. The

discrepancy between the two methods increases with
increasing LB, i.e. decreasing dielectric constant. The
simulated mean activity coefficient ratio increases with
increasing concentration cb of the equilibrium bulk
electrolyte. Again the trend is correctly reproduced by
the Poisson-Boltzmann equation.

The other quantity presented in this study, the
Donnan coefficient Γ, is considerably more sensitive to
variations of dielectric constant of the solvent and there-
fore to LB. Note that this quantity measures the amount of
electrolyte being rejected from the microcapillary. The
concentration dependence is such that the Donnan coeffi-
cient becomes smaller with decreasing bulk electrolyte
concentration. In other words, the higher the concentra-
tion of invading electrolyte, the less efficient becomes the
microporous material in rejecting electrolyte. The results
can be explained by increased screening of the charged
microcapillary at higher electrolyte concentration, which
effectively reduces its power to reject the invading co-
ions.

The Donnan coefficient Γ sharply decreases with
increasing Bjerrum length, that is with decreasing dielec-
tric constant of solvent. The direction of the effect is
therefore the same as produced by the increase of elec-
trolyte concentration, but the mechanism leading to it is
different. A solvent with a low dielectric constant is able
to produce strong correlations between small ions (in-
cluding ion pairs)39,41,42 and ions and the charged inner
surface of the microcapillary. As a result a ”triple-layer”
(cf Fig. 7) may be formed, an effect which grossly in-
creases the concentration of co-ions in the microcapil-
lary, and therefore reduces its rejection power. Another
important conclusion of this work is, that the Poisson-
Boltzmann equation is merely qualitatively correct under
such conditions and cannot be trusted to explain the ex-
perimental data.

As already mentioned in Introduction, to our best
knowledge, no measurements exist to be directly com-
pared with calculations presented in this study. It is worth
mentioning, however, that osmotic pressure and heat of
dilution measurements for polystyrenesulfonic acid and
its salts in water-dioxane mixtures,43,44 indicate strong
correlation between the counterions themselves, as also
between and counterions and polyions. This correlation is
reflected in low values of the osmotic coefficient and in
less exothermic enthalpy of dilution as found when pure
water has been used to dissolve the polyelectrolyte. The
calculations presented in this paper are consistent with the
experimental results of Vesnaver and coworkers.43,44
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Povzetek
Izra~unali smo porazdelitev ionov med porozno fazo, ki jo sestavljajo nabite valjaste mikrokapilare, in nemoteno razto-
pino elektrolita. V ta namen smo uporabili velekanoni~no metodo Monte Carlo in pa nelinearno Poisson–Boltzmanno-
vo diferencialno ena~bo. Namen dela je bil raziskati vpliv dielektri~ne konstante topila na porazdelitev ionov elektroli-
ta. Izra~unali smo srednji koeficient aktivnosti raztopine znotraj mikropore in tudi Donnanov izklju~itveni koeficient.
Ugotovili smo, da se slednji manj{a z rasto~o koncentracijo elektrolita in s padajo~o dielektri~no konstanto topila. Dru-
ga~e povedano, desalinacija postane v topilih, ki imajo dielektri~no konstanto ni`jo od vode, zelo neu~inkovita. Teorija
na osnovi Poisson–Boltzmannove ena~be pravilno napove odvisnosti posameznih koli~in od parametrov modela, a so
tako izra~unane vrednosti, v primerjavi z Monte Carlo simulacijami, mo~no prevelike. Porazdelitve posameznih ionskih
vrst, ki so stranski produkt tega ra~una, omogo~ajo bolj{e razumevanju termodinami~nih rezultatov.
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