The Direct Formation of 2-Cyano-4-amidopyridine via α-Cyanation of 4-Amidopyridine N-Oxide with Dimethylcarbamoyl Chloride and Cheap Potassium Cyanide

Zhibao Huo,¹ Teruo Kosugi² and Yoshinori Yamamoto¹,*

¹ Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

² Fukuzyu Pharmaceuticals Co., Ltd, Toyama 939-8261, Japan

* Corresponding author: E-mail: yoshi@mail.tains.tohoku.ac.jp

Received: 01-09-2008

Dedicated to Professor Branko Stanovnik on the occasion of his 70th birthday

Abstract

Reaction of 4-amidopyridine N-oxide with dimethylcarbamoyl chloride and potassium cyanide in CH₃CN at 120 °C gave the corresponding 2-cyano-4-amidopyridine in a good yield.

Keywords: Potassium cyanide, α-cyanation, pyridine N-oxide, 2-cyano-4-amido pyridine, 4-amidopyridine N-oxide.

1. Introduction

The synthesis of substituted cyanopyridines has been of considerable interest because the structural framework of cyanopyridines is often found in important biologically active compounds.¹ Cyanation of pyridine N-oxide is one of the most useful synthetic methods for the formation of cyano-pyridines.² Due to their potential importance, several synthetic methods from substituted pyridine N-oxides have been developed. For example, the reaction of cyanide ions with pyridine N-oxides in the presence of an acylating agent³ or with pyridine N-oxide quaternary salts provides the corresponding cyanopyridines in good yields (Eq. 1).⁴,⁵

\[
\begin{align*}
\text{R} & \quad \text{(CH₃)₂NCOCl} \\
& \quad \text{TMSCN / CH₂Cl₂} \\
& \quad \text{KCN / CH₃CN} \\
& \quad \text{α} \quad \text{CN} \\
& \quad \text{N} \quad \text{CN} \\
\end{align*}
\]

(Figures and equations are not provided in the text.)

FYX-051, 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl)pyridine-2-carbonitrile,⁶ is a new xanthine oxidoreductase (XOR) inhibitor developed by Fuji Yakuhin Co., Ltd. XOR catalyzes the last two reactions of purine catabolism, i.e. the hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. FYX-051 was synthesized by Fukuzyu Pharmaceuticals Co., Ltd (Toyama, Japan) according to the reaction sequence shown in Scheme 1. First, commercially available isonicotinic acid N-oxide was protected by Boc-hydrazine, and the resulting protected pyridine N-oxide was treated with expensive TMSCN in the presence of (CH₃)₂NCOCl, giving the α-cyanopyridine derivative in 69% yield. Then, deprotection of the Boc group was needed before condensation with para-cyanopyridine (Scheme 1). It would be advantageous to avoid the protection-deprotection steps and also to avoid the use of expensive TMSCN. Therefore, development of a new method for direct cyanation from 4-amidopyridine N-oxide was needed.

2. Results and Discussion

Recently, we reported an convenient method for the direct synthesis of 2-cyanoisonicotinamide 2 from isonicotinic acid N-oxide 1 using zinc cyanide as a cyanation reagent.
reagent (Eq. 2). This finding enabled the synthesis of FYX-051 · TsOH from the pyridine N-oxide using cheap cyanation reagent, Zn(CN)$_2$ (Scheme 2).

Encouraged by this finding, we thought that 4-amidopyridine N-oxide 3 would be converted to the corresponding α-cyanopyridine 4 using Zn(CN)$_2$ (Eq. 3). However, the reaction of 3 with Zn(CN)$_2$ and dimethylcarbamoyl chloride gave 4 in a low yield (Table 1, entry 4). Accordingly, it is clear that Zn(CN)$_2$ is not applicable to the α-cyanation of 4-amidopyridine N-oxides although it gave a good result in the case of isonicotinic acid N-oxide 1.

We examined the cyanation of 4-amidopyridine N-oxide 3 with various cyanides and acylating agents (Eq 4, Table 1). Dimethylcarbamoyl chloride was found to be the best acylating agent among the cyanating agents we tested, and KCN gave the best result in CH$_3$CN (entry 1). Use of other cyanide sources such as NaCN, AgCN and Zn(CN)$_2$ afforded product 4 in lower yields (entries 2–4), and no products was detected in the presence of CuCN and Hg(CN)$_2$ (entries 5 and 6). The use of benzoyl chloride and lithium chloride did not lead to any product formation (entries 7–9).

As shown in Figure 1, the time profile of the reaction of 3, monitored by NMR, indicated that the starting substrate 3 was consumed completely within 4 h. However, the formation of 4 reached to plateau after 2.5 h and the yield (60%) did not increase significantly even at a prolonged reaction time. The reason why the curve of de-
crease of the starting material does not correspond well to that of increase of product formation is not clear.

Next, we investigated the effect of solvents, reaction temperature and amount of cyanides and acylating agents, and the results are summarized in Table 2. CH$_3$CN and THF gave the product in good yields (entries 1 and 2). Use of DMF, CH$_2$Cl$_2$, 1,4-dioxane, and AcOEt, instead of CH$_3$CN, gave the product in lower yields (entries 3–6). Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.

A plausible mechanism for the KCN mediated synthesis of 2-cyano-4-amidopyridine is illustrated in Scheme 2. At the initial stage of the reaction, the intermediate 1-acyloxypyridinium ion A is formed as mentioned in the previous literatures. Other solvents such as H$_2$O, mixture of CH$_3$CN and H$_2$O, toluene, DMSO and Et$_2$O were inefficient and no desired product was obtained (entries 7–11). Decreasing the amount of dimethylcarbamoyl chloride gave a low yield (entry 12). The product 4 was isolated in 64% yield when the reaction was carried out at 120 °C for 4 h in the presence of 2 equiv of potassium cyanide.
the reaction of A with KCN affords the intermediate B. Removal of N,N-dimethylcarbamic acid from B gives 2-cyano-4-amidopyridine 4.

3. Conclusion

We have developed an efficient method for the direct formation of 2-cyano-4-amidopyridine from 4-amidopyridine N-oxide using cheap potassium cyanide as a cyanating agent.

4. References

The preparation of 1-dimethylaminocarbonyloxypyridinium ions was reported previously, see: P. Bergthaller, Ger. Offen. 2, 408, 813 (Cl. C07D), Sept. 4, 1975, 25 pp., Chem. Abstr. 84, P43859p (1976).

8. The procedure for the synthesis of 2-cyano-4-amidopyridine 4 is as follows. To a 5 mL screw capped vial equipped with a magnetic stirring bar were added 4-amidopyridine N-oxide (50.6 mg, 0.2 mmol), dimethylcarbamoyl chloride (0.056 mL, 0.6 mmol), potassium cyanide (26.0 mg, 0.4 mmol), and acetonitrile (2 mL) under an argon atmosphere. The reaction mixture was stirred at 120 °C for 4 h, and the progress of the reaction was monitored by TLC (hexane/ethyl acetate; 2/1). After complete consumption of the starting material, the reaction mixture was cooled to room temperature and water was added, and stirring was continued for 5–15 minutes. The organic layer was separated, and the aqueous layer was extracted three times with 5 mL of ethyl acetate. The combined ethyl acetate layers were dried over anhydrous sodium sulfate and the solvents were removed under reduced pressure, and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate; 10/1 ~2/1) to afford product 4 in 64% yield (33.6 mg). 1H NMR (300 MHz, CDCl3): δ 1.51 (9H, s), 7.86 (1H, d, J = 5.0 Hz), 8.07 (1H, s), 8.88 (1H, d, J = 5.0 Hz); 13C NMR (75 MHz, CDCl3): 26.85, 48.54, 80.65, 116.08, 121.90, 124.54, 125.97, 133.84, 141.27, 151.50; IR (KBr) 2980, 2239, 1706, 1666, 1364, 1156, 762 cm−1; HRMS (EI) Calcd for C12H14N4O3 ([M+Na]+) 285.0958. Found 285.0958.