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Abstract
The first bridge diagrams of the classical theory of liquids are discussed for two fluids of Lennard-Jones spheres and for

a fluid of a two-centre Lennard-Jones model of liquid bromine. The bridge diagram of liquid bromine is calculated us-

ing a biased Monte-Carlo method. We investigate the first bridge diagrams, the bonds of which are either Mayer func-

tions f or total correlation functions h. The Mayer f-bond representation leads to very high values of the first bridge dia-

gram, which can not be used alone in a truncated expansion of the diagrammatic series of the bridge function. We analy-

se the origin of these high values. In the case of the h-function representation, the bridge function series truncated to the

sole first bridge diagram is introduced into the closure of the Ornstein-Zernike equation and leads to some improvement

of the pair distribution function upon the HNC result, as compared to the exact simulated values.

Keywords: Bridge function, molecular Ornstein-Zernike equation, liquid bromine

1. Introduction

One of the most important properties in the classical
description of isotropic liquids at thermodynamic equili-
brium is the molecular pair distribution function g. It de-
scribes the structure of the liquid at the two-particle level
and is used to calculate various thermodynamic properties
such as pressure, internal energy, and dielectric con-
stant.1–4 The partial structure factors, which can be measu-
red by neutron diffraction experiments, are closely related
to the total pair correlation function h = g – 1. The inter-
pretation of neutron diffraction measurements gives in-
sight into the liquid structure and therefore into the un-
derlying intermolecular potential u.5–8 Furthermore, g
plays an important role in the calculation of non-equili-
brium properties like ionic conductivity and diffusion
constants. It also affects the relative Brownian dynamics
of two molecules. This spatial dynamics induces efficient
relaxation of the nuclear spins on the first molecule when

these nuclear spins undergo the fluctuating local magnetic
fields due to a paramagnetic moment on the second mole-
cule. These paramagnetic enhancements of the nuclear re-
laxation rates are responsible of nearly 50% of the impro-
vement of the image contrast due to injected standard pa-
ramagnetic gadolinium(III) chelates in magnetic resonan-
ce imaging. These enhancements can serve to study the
pair distribution functions of solvent and solute molecules
for a large variety of representative situations with the
help of easily accessible NMR techniques.9–12

It is therefore of fundamental importance to charac-
terize the pair distribution functions in liquids. Their cal-
culation from first principles suffers mainly from three
uncertainties: (i) The potential u between the molecules or
particles (e.g. micelles) of a liquid is known with limited
accuracy only. Usually, the complicated many-particle in-
teractions are approximated by pair potentials. (ii) For a
given pair potential, even if the pair distribution function
can be computed by Molecular Dynamics or Monte-Carlo
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simulation, its convergence can be very slow and the re-
sult is always affected by some statistical noise that de-
pends on the performance of the used computer. Never-
theless, computer simulations are considered to be “exact”
to within the statistical noise and the resulting pair distri-
bution functions serve as references. (iii) All theoretical
methods for determining g from the pair potentials are ba-
sed on Ornstein-Zernike (OZ) type integral equations and
introduce some approximations of the so-called bridge
function B appearing in the closures of these equations. It
is very difficult to estimate the errors on g stemming from
such approximations.

The interest in the bridge functions B of hard body
liquids was renewed recently13–19 after it had been shown
that the multi-dimensional integrals of the first elementary
bridge diagrams occurring in the expansion of B can be
computed efficiently by Monte-Carlo techniques.20 More-
over, methods have become available to derive the “exact”
bridge function from the computed pair distribution func-
tion.13,16,21 Finally, for the hard-sphere fluids, the simula-
ted pair distribution function could be nearly reproduced
thanks to an accurate parametrisation of B.22,23 However,
our knowledge of the bridge function is essentially limited
to hard-body fluids. As far as we know, bridge functions
in liquids containing polar molecules and ions have not
yet been explored. Bridge function studies for reasonably
realistic models of soft atoms are scarce. Here, we further
investigate the bridge functions of fluids of atoms of one
Lennard-Jones (LJ) centre and molecules of two LJ cen-
tres representing bromine Br2.

In the integral equation theory of classical fluids, the
total correlation function h(1,2), where 1 and 2 stand for
the positions and orientations of the first and second mo-
lecules, is given by the sum of the so-called direct correla-
tion function c(1,2) and indirect correlation function
η(1,2) as

(1)

Consider a one-component fluid. Let ρ be the num-
ber density of the molecules. The functions c(1,2) and
η(1,2) are obtained simultaneously as the solution of the
OZ convolution equation supplemented with a closure
equation. The OZ equation reads

(2)

where ∫...d3 represents the integration over the coordina-
tes of position and orientation of molecule 3. The closure
equation is

(3)

The bridge funtion B can be represented by an infi-
nite series of bridge diagrams involving either Mayer 

ƒ-functions with ƒ = exp(–βu), β = 1/(kBT) or total pair
correlation functions h = g – 1.24 We write B(f) for the re-
presentation of B in terms of the Mayer ƒ-functions and
B(h) for the representation of B in terms of the total corre-
lation functions h. The diagrams of B(h) and B(f) are inte-
grals over the positions and orientations of k particles, k ≥
2. Each diagram carries a multiplicative weight ρ k. Hen-
ce, the bridge function itself can be represented by a pow-
er series in ρ k. In the Mayer ƒ-function representation B(f),
the coefficients b(f)

k in the power series are density inde-
pendent, yielding B(f) = limn→ ∞ Β

(f)
n with B(f)

n = ∑n
k=2b(f)

k ρ k.
In the power series of the h-function representation B(h),
the coefficients b(h)

k depend on h and hence on the particle
density: B(h) = limn→ ∞ Β

(h)
n with B(h)

n = ∑n
k=2b(h)

k ρ k. In the
case of B(h) each diagram is an infinite partial sum of dia-
grams of B(f). Furthermore, each coefficient b(h)

k contains
less diagrams than b(f)

k for n > 2. Finally, the computation
of the h-bond diagrams can be performed over smaller
integration hypervolumes than that of the ƒ-bond dia-
grams, since h is smaller than ƒ ≈ – βu at large intermo-
lecular distance R12 as is often the case. This property is
particularly striking in the case of an ionic fluid, for
which h is a short-ranged screened function, while the
Mayer ƒ-function slowly decays as 1/R12, preventing the
computation of the ƒ-bond diagrams. However, for a
fluid of hard spheres of diameter σ at the significant
density ρ σ 3 = 0.8, the progressive incorporation15,20 of
the terms in b(h)

2 , b(h)
3 , and b(h)

4 into the approximation of
Β (h)

n (see Fig. 8 of Ref.15) used in the closure is accom-
panied by a very slow convergence of g towards the “ex-
act” simulated value (see Fig. 9 of Ref. 5). The rather
poor estimates of g corresponding to Β (h)

n with n ≤ 4 can
be attributed to the fact that the true bridge function B
extracted from computer simulations is mostly negative
(see Fig. 7 of Ref. 3 and Fig. 6 of Ref. 4). This negative
sign also occurs for the first bridge diagram ( ) of B(f)

in the case of hard spheres of diameter σ since this dia-
gram contains 5 Mayer ƒ-bonds such as ƒ(r) = –1 for 0
≤ r ≤ σ and ƒ(r) = 0 for r >σ . The first diagram of B(h)

has the same topology, but with h-bonds taking quite
large positive values which, at r ≈ σ , are the source of
positive values of b(h)

2 , which are absent in the first dia-
gram b(f)

2 of B(f) 15,20 and lead to incorrect positive values
of B(h) ≈ b(h)

2 ρ 2. The terms of B(h) in b(h)
3 and b(h)

4 are in-
sufficient to cancel the unphysical positive character of
B(h) ≈ b(h)

2 ρ 2.
For the more realistic Lennard-Jones potential, it is

unkown whether the first term in B(f) is a better approxi-
mation of the bridge function B than the first term in B(h).
This problem will be discussed herafter for fluids of LJ
atoms and LJ Br2.

The article is organized as follows: In section 2, we
briefly introduce the numerical algorithm used to compu-
te the bridge diagrams. We discuss the resulting bridge
diagrams and their effect on the pair distribution function
in section 3 and summarize our results in section 4.
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2. Calculation of the First Bridge Diagram

The bridge diagram associated with ρ 2 can be
symbolized by . In the case of b(h)

2 all bond functions
are total correlation functions h, in the case of b(f)

2 , all bond
functions are Mayer ƒ-functions. The numerical calcula-
tion of this diagram can be performed by the application
of an expansion of the bondfunction in Legendre polyno-
mials in the case of a system with purely spherical pair
potentials. This method was introduced by Barker and
Monaghan,25 and Attard and Patey.26 In the more general
case of molecules, the angular dependence of the bond
function has to be taken into account. In the laboratory
frame, denote the position of the mass centre and orienta-
tion of a molecule i = 1,..., 4 by Ri and Ωi: = (αi, βi, γi),
where (αi, βi, γi), is the set of Euler angles of a molecular
frame as defined by Messiah.27 We obtain for b(h)

2 :

(4)

where Rij = |Rj– Ri| is the intercentre distance and A is the
domain R3 × [0,2π[ × [0,π] × [0,2π[.

In an isotropic liquid, the position and orientation of
the molecular frame of molecule 1 in the laboratory frame
are arbitrary because of the translation and orientation in-
variance of the liquid. We choose R1 = 0 and R12: = R2 –
R1 = R2 = R12ez where ez denotes the unit vector in the di-
rection of the z-axis of the laboratory frame. Hereafter, the
angle α2 of molecule 2 will be simply denoted by α when-
ever convenient. This means that every function F depen-
ding on the distance and the mutual orientation of two
molecules can be characterized only by R12, α, β1, β2, γ1,
and γ2. In the case of linear molecules with a centre of in-
version, this is further simplified by the fact, that F is in-
dependent of  γ1 and γ2. In addition, the following symme-
try conditions hold for each F (we write the explicit de-
pence on R12, α, β1, and β2 only):

(5)

The first two relations follow from the invariance of
F through permutation of identical molecules, the last two
from the fact that the molecule has a centre of inversion.
The numerical calculation of the multiple integral (4) is
carried out as described previously.20 We keep the therma-
lisation periods in the Metropolis algorithm as short as
possible by proceeding from one configuration of the mo-

lecules 1 and 2 to another which is “close”: We use the
thermalized configurations of the four molecules at larger
distances as a starting configuration at shorter distances
between 1 and 2. At large distances a change in the orien-
tations of the molecules has a minor effect on the value of
the integrand than at shorter ones. Consequently, we use
the thermalized configuration at maximum distance as a
starting configuration when we change the angles be-
tween molecules 1 and 2.

It is necessary to interpolate the values of b2 obtai-
ned on a rather coarse grid of the four variables R12, α, β1,
and β2 onto a finer grid. The interpolation will provide a
rather smooth bridge function approximation B ≈ b2ρ

2

which can be used in a subsequent solution of the molecu-
lar Ornstein-Zernike equation. We decided to perform
successive one-dimensional interpolations although this
method is ambiguous. It is only justified by the fact that
we do not find substantial deviations in the results irre-
spective of the order of successive one dimensional inter-
polations. We perform first an interpolation with respect
to α, then with respect to β1, and β2, and at the end with
respect to R12. For the one dimensional interpolations, we
apply the formula of Akima.28

The solution of the Ornstein-Zernike equation is cal-
culated by standard Fourier transform techniques and di-
rect iteration for the systems with spherical molecules and
by an expansion in rotational invariants in the case of
asymmetric molecules.29

Our Monte-Carlo simulation of the molecular fluid
was performed by standard methods applying periodic
boundary conditions and the Metropolis sampling sche-
me.30,31 We used 500 molecules in the simulation and ge-
nerated 11.2 × 106 configurations for the calculation of the
mean values.

3. The First Bridge 
Diagram for Br2

We first investigate the bridge diagrams of two LJ
atoms interacting through LJ potentials P1 and P2 inspi-
red by the LJ potential P3 of the bromine molecule appro-
ximated as a dumbbell made of two equal Lennard-Jones
centres separated by LBr–Br = 2.27 Å. The parameters for
P1–P3 are listed in Table 1.

The diameter σ of the potentials P1 and P2 is defi-
ned as the diameter of the hard sphere having the “same”
excluding volume as the LJ dumbbell. The excluding vo-

Potential σσ/Å εε/(kBT) LBr-Br/Å σσρρ3

P1 4.316 1.0788 – 0.94  

P2 4.316 3.2364 – 0.94   

P3 3.61 1.0788 2.27 0.5528

Table 1. Potential parameters
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lume of the dumbbell is simply obtained by rolling one of
the spherical atoms of the dumbbell on the surface of a re-
ference dumbbell so as to generate a Connolly surface that
is the external surface of the excluding volume. This exc-
luding volume is about 5% larger than the volume of the
dumbbell itself. Note that it is a minimal Connolly volume
in the sense that the presence of the second LJ atom bound
to the rolling dumbbell was not taken into account. The
number densities ρ for the systems P1-P3 are all equal.
The potential between two bromine molecules is the sum
of four site-site LJ potentials. Hence, we have to define a
LJ potential for the equivalent atoms which is about four
times as strong as the LJ potential between two single si-
tes on two Br2 molecules. Nevertheless, this is a rough ap-
proximation because the site-site distances of two Br2 mo-
lecules generally have different values for an arbitrary
configuration of these molecules. Consequently, we deci-
ded to investigate various values of the LJ parameter βε
of the atomic fluids ranging from the Br site – Br site va-
lue βεBr2

= 1.0788 up to 4βεBr2
. In this range, we obtained

solutions of the Ornstein-Zernike equation with the HNC-
closure for βε as large as 3.6. We will show that the values
of B ≈ b(f)

2 ρ2 become very large and can not serve in any
bridge function approximation whereas B ≈ b(h)

2 ρ2 may be
a candidate for a bridge function approximation.

In Figure 1, we show the bond functions for the cal-
culation of b(f)

2 and b(h)
2 . In contrast to purely repulsive pair

potentials, the Mayer ƒ-function of the Lennard-Jones po-
tential has a positive local maximum at r = σ 6√2. In all ca-
ses, the “first” maximum (the maximum at smallest di-
stance from the origin) of the corresponding total correla-
tion function h is at lower distances than r = σ 6√2. In the
case of P1 (βε = 1.0788), the maxima of ƒ and h have ap-
proximately the same height, but this is not true for P2 (βε
= 3.2364). In the latter case, the maximum of h reaches a
height of about 4.4 whereas the maximum of the Mayer 
ƒ-function assumes a value of 24.4. We interprete these
findings in the following way: The total correlation func-

tion h has its peak at lower distances than the Mayer ƒ-
function due to packing effects. The higher the temperatu-
re (i.e. the lower the value of βε ) and thus the higher the
energy in the fluid, the closer the particles can approach
each other although there is a repulsive component in the
Lennard-Jones potential. At low temperatures (high va-
lues of βε ), the average distance between the particles is
shifted towards the position of the maximum of the Mayer
ƒ-function at which the strongest attraction between the
particles occurs. Consequently, the highest peak of h is
shifted to larger distances, but it is still below the position
of the maximum of the Mayer ƒ-function in our case. Al-
though there is attraction between the particles in this di-
stance regime, the integral over the first peak of the pair
distribution function can not exceed the value of the coor-
dination number in a solid crystal or densest sphere pac-
king (12). Thus, the height and width of the first peak in
the total correlation function h are limited. Because of the-
se statistical effects limiting the values of the total correla-
tion function h, the values of the first bridge diagram b(h)

2

are also limited. This is not true in the case of the Mayer
ƒ-function representation b(f)

2 because the Mayer ƒ-func-
tion only represents the interaction between the particles
which may become very large. We demonstrate the effect
of the bond function on the values of b2 in Figure 2 for
the systems P1 and P2.

In the case of P2, we also show the bridge function
in the parametrization of Duh, Haymet, and Hender-
son.32,33 We did not obtain convergence including this
bridge function into the closure relation of the Ornstein-
Zernike relation, but we show the approximation obtained
from the result of an HNC solution of the Ornstein-Zerni-
ke equation.

It is remarkable that the bridge function approxima-
tion B(h) ≈ b(h)

2 (r)ρ2 does not strongly depend on the tempe-
rature (or βε ) and is therefore rather similar for P1 and
P2. In contrast to that, b(f)

2 ρ2 strongly depends on tempera-
ture and assumes values in the order of 0.4 × 105 near σ

Figure 1. Possible bond functions for the first bridge diagram: Mayer function ƒ and total correlation function h in the HNC-approximation for βε
= 1.0788 (P1) and βε = 3.2364 (P2). We also show the running coordination number calculated from the HNC-approximation of the pair distribu-

tion function g.



184 Acta Chim. Slov. 2009, 56, 180–187

Rast et al.:  Analysis of The First Bridge Diagram of Liquid Bromine

for P2. Only the complete series may give reasonable va-
lues at the low temperature of system P2. However, even
the convergence is not proven to the knowlege of the au-
thors. A complete discussion of the bridge function of sys-
tems P1 and P2 is beyond the scope of this paper, but we

demonstrated that the Mayer ƒ-bond representation is not
useful for obtaining bridge function approximations in the
case of a system with Lennard-Jones interactions.

The simple two-centre LJ model of bromine (see P3
in Table1) is discussed in the literature.6,34 A detailed

Figure 2. Bridge function approximation B(r) ≈ b(f)
2 (r)ρ2 and B(r) ≈ b(h)

2 (r)ρ2 truncated to the first bridge diagram b2 calculated for the Mayer func-

tion ƒ (b(f)
2 ) and for the total correlation function h in the HNC approximation (b(h)

2 ) for the Lennard-Jones parameters βε = 1.0788 (P1) and βε =
3.2364 (P2). We also show the bridge function approximation B(DDH) by Duh, Haymet, Henderson32,33 calculated from the HNC-solution of the Or-

stein-Zernike equation for potential P2.

Figure 3. Selected pair configurations of bromine molecules, for which the first bridge diagram was calculated (left): bridge function approxima-

tions B(f) ≈ b(f)
2 ρ2 (top right) and B(h) ≈ b(h)

2 ρ2 (bottom right). The first bridge diagram b(h)
2 was computed with the help of the previously developed

biased Monte Carlo method20 with a cut-off radius of 8.3272 Å and 3.28 × 106 Monte-Carlo steps.
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analysis of possible model potentials of liquid bromine
was published in various articles.34–36 For the calculation
of b(f,h)

2 (R12, α, β1, β2) we rely on the knowledge of the
Mayer ƒ-function and the HNC-approximation of h(R12,
α, β1, β2) in the rotational invariant expansion, respecti-
vely. The most time consuming step is to calculate the ƒ or
h-function for each chosen configuration of the molecules
via this rotational invariant expansion.

In Figure 3, we present selected configurations of
the bromine molecules for which we calculated the first
bridge diagram. We also show the bridge function appro-
ximation B(f) ≈ b(f)

2 ρ2, and the approximation B(h) ≈ b(h)
2 ρ2

for these configurations. Again, the bridge function appro-
ximation B(f) has very large values and can not be used as
a bridge function approximation in the Ornstein-Zernike
equation. In the case of the approximation B(h) ≈ b(h)

2 ρ2, the
bridge function represents an alternately repulsive and at-
tractive potential since B(h) is oscillating around zero. The
character of the bridge function is the more repulsive the
larger the overlap of the Lennard-Jones sites is. This fin-
ding is similar to the spherical Lennard-Jones systems
presented in Figure 2. However, the oscillations around
zero of our bridge function approximation are in contrast
to the non-positivity of the bridge function of spherical
systems as it was established in many empirical formulae
like the Percus-Yevick approximation,2 the Martynov-Sar-
kisov approximation37 or the more refined form of Duh,
Haymet, and Henderson.32,33 Whether the higher order
terms in the bridge function series change these characte-
ristics of b(h)

2 is not yet clear and can only be determined
by an inversion of the Ornstein-Zernike equation using
computer simulation results. For that purpose, it would be
interesting to use the recently developed method16,21 to
calculate the exact form of the bridge function for angle
dependent interactions. A bridge function approximation
using the representation B(f) up to the terms in ρ6 was
found to be very successful for the hard sphere poten-

tial,13,14 but the present study shows that such a procedure
can not be extended to the LJ potentials. Then, the repre-
sentation B(h) involving the total correlation function h is
the only alternative in this case. Should this approxima-
tion provide bridge functions with dubious values near r =
σ, another way would be to calculate the bridge function
from the Mayer ƒ-functions of a purely repulsive referen-
ce potential. This is the essence of the RHNC method,
which was successfully applied without optimization of
the bridge function of the natural reference hard-sphere
system, for instance in the case of the dipolar hard-sphere
fluid,38 and with optimization of the bridge functions for
this fluid and a water model.39,40 RHNC methods are in-
tended for yielding approximate bridge functions on an
intuitive basis or optimization criteria. They are beyond
the scope of the present analysis of the convergence pro-
perties of the bridge diagram series and will not be further
discussed here. Besides, it could be tempting to estimate
the bridge function B(h) of a given fluid by the n-th order
approximation B(href)

n of the bridge function B(href) of a refe-
rence system in the representation of its total correlation
function href. However, this would not enable us to discri-
minate between the possible errors in the bridge function
due to the substitution of h by href and those due to the
truncation of the bridge diagram series, which was the
purpose of this work.

In Figure 4, we show the pair distribution functions
of the centres of two bromine molecules for the Monte-
Carlo simulation (gcc,MC),31 the HNC approximation
(gcc,HNC) and the HNC closure including B(h) ≈ b(h)

2 ρ2

(gcc,HNC+b2
). We also depict the differences Δgcc,HNC–MC =

gcc, HNC – gcc, MC and Δgcc,HNC+b2 –MC = gcc,HNC+b2 – gcc,MC. We
obtain an improvement of the height and position of the
first peak of the pair distribution function applying the
HNC + b2 approximation instead of the simple HNC clo-
sure, but there is an underestimation of the height of the
shoulder around 4 Å in the HNC + b2 approximation

Figure 4. Pair distribution function gcc of the centres (c) of two bromine molecules resulting from the (i) Monte-Carlo (MC) simulation (gcc, MC), (ii)
HNC approximation (gcc, HNC), and HNC closure including B(h) ≈ b(h)

2 ρ2 (gcc,HNC+b2
) (left). Differences Δgcc,HNC–MC = gcc, HNC  – gcc, MC and Δgcc,HNC+b2 –MC

= gcc,HNC+b2 – gcc,MC (right).
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which is not present in the HNC approximation. We also
calculated

as a measure of the integral deviation of the various ap-
proximations from the Monte-Carlo simulation result.
ΔHNC–MC = 338 Å3 is 16% larger than ΔHNC+b2–MC = 291
Å3. We conclude that there is some improvement but hig-
her order terms play a role in the bridge function expan-
sion.

4. Conclusion

In this paper, we analysed the first bridge diagram
for two fluids of Lennard-Jones atoms and for a fluid of
two-centre Lennard-Jones molecules approximating bro-
mine. We showed that the first bridge diagram of the brid-
ge function series expressed in terms of Mayer ƒ-bonds
has a very large amplitude which prevents the convergen-
ce of the series towards the much smaller values of the
true bridge function because of the statistical uncertainty
of the values of the various diagrams of the series. This
large amplitude is a direct consequence of the high and
broad peak in the Mayer ƒ-function, which occurs either
at low temperatures or because of a strong attractive part
of the Lennard-Jones potential. It is interesting to note that
the total correlation function h is the sum of irreducible
diagrams consisting of two white circles, black ρ circles,
and ƒ bonds.1 The function ƒ itself is the lowest order ap-
proximation of h. In the case of a significant Lennard-Jo-
nes attraction and at normal liquid density, ƒ takes high
positive values so that it can not be a reasonable approxi-
mation of h as shown, for instance, by the unphysically
large values of the coordination number that would be de-
rived from g = 1 + h ≈ 1 + f. The high positive values of ƒ
are cancelled out by the large and/or numerous negative
values of the other diagrams to yield a physically relevant
total correlation function h. To the opinion of the authors,
it is remarkable and quite unexpected that the diagrams of
h retained by the Percus-Yevick and HNC approximations
also involve diagrams with large positive and negative va-
lues that mutually cancel. Such a situation, which results
from many high-order spatial correlations among the mo-
lecules, is not attainable by a bridge function approxima-
tion limited to a small number of ƒ-bond diagrams. In
contrast, the h-function representation of the bridge func-
tion is a sum of multi-dimensional integrals of products of
functions h, for which the large effects of ƒ have been can-
celled by the spatial correlations among the molecules.
Therefore, b(h)

2 ρ2 was shown to be small and the higher or-
der terms b(h)

k ρk of the bridge series B(h) are expected to be
small too. The term b(h)

2 ρ2 is a much more reasonable ap-
proximation of B than b(f)

2 ρ2.

We calculated the first bridge diagram b(h)
2 for a two-

centre Lennard-Jones model of liquid bromine. The intro-
duction of B(h) ≈ b(h)

2 ρ2 into the closure improves the pair
distribution function g, even if b(h)

2 is calculated from the
HNC solution for h and no iteration for the calculation of
self-consistent functions h and b(h)

2 is performed. However,
because B(h) ≈ b(h)

2 ρ2 takes quite small values, the improve-
ment is modest as shown by the overall reduction of about
16% of the difference between the values of g derived
from the integral equation theory and from the simulation.
Estimating the number of h-bond diagrams required to get
a larger effect is difficult. The present study can be easily
extended to fluids of molecules with different interaction
potentials, for which the influence of B(h) ≈ b(h)

2 ρ2 should
be estimated.
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Povzetek
Obravnavali smo prvi »bridge« graf po klasi~ni teoriji teko~in za dva primera teko~in predstavljenih z Lennard-Jones-

ovimi kroglicami, ter model teko~ega broma, kjer smo uporabili Lennard-Jones-ov model z dvema centroma. »Bridge«

graf za teko~i brom smo izra~unali z uporabo adaptirane metode Monte Carlo. Raziskali smo prve »bridge« diagrame,

v katerih so vezi lahko Mayerjeve f-funkcije ali celotne korelacijske funkcije h. V primeru Mayerjevih f-funkcij smo do-

bili izredno visoke vrednosti prvega diagrama, ki same po sebi ne zado{~ajo za oceno celotne »bridge« funkcije. V pri-

meru uporabe h-funkcij prvi graf v razvoj predstavlja dobro oceno za celotno »bridge« funkcijo. Parske porazdelitvene

funkcije dobljene z Ornstein-Zernike integralsko ena~bo, kjer pribli`ek za »bridge« funkcijo vklju~imo v HNC pribli-

`ek, se dobro ujemajo z rezultati ra~unalni{ke simulacije.


