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Abstract
A theoretical description with numerical experiments and analysis of the reaction-diffusion processes of homogeneous

and non-homogeneous reactions in a microreactor is presented considering the velocity profile for laminar flows of mis-

cible and immiscible fluids in a microchannel at steady-state conditions. A Mathematical model in dimensionless form,

containing convection, diffusion, and reaction terms are developed to analyze and to forecast the reactor performance.

To examine the performance of different types of reactors, the outlet concentrations for the plug-flow reactor (PFR), and

the continuous stirred-tank reactor (CSTR) are also calculated for the case of an irreversible homogeneous reaction of

two components. The comparison of efficiency between ideal conventional macroscale reactors and the microreactor is

presented for a wide range of operating conditions, expressed as different Pe numbers (0.01 < Pe < 10). The numerical

procedure of complex non-linear systems based on an implicit finite-difference method improved by non-equidistant

differences is proposed.

Keywords: Microfluidics; reaction-diffusion dynamics; microreactor; numerical analysis; non-equidistant finite diffe-

rences

1. Introduction

Microtechnology has uncovered new scientific solu-
tions and challenges in a broad range of areas, from elec-
tronics, medical technology, and fuel production and pro-
cessing to biotechnology, chemical industry, environmen-
tal protection, and process safety. Microscale reactors are
devices whose operations depend on precisely controlled
design features with characteristic dimensions from sub-
millimeter to submicrometer. Because of the small
amounts of chemicals needed and the high rate of heat and
mass transfer, microscale systems are especially suited for
reactions with highly toxic, flammable, and explosive
reactants.1–4 In the last decade, Microreactor Technology
(MRT), accepted as a new concept in chemical enginee-
ring, has impressively demonstrated the advantages of mi-
crostructured devices for chemical and biochemical reac-
tions. Numerous reactions, including many notable and in-

dustrially relevant reactions, have been tried out success-
fully in microreactors and several hundred publications
with some research review papers have appeared in peer-
reviewed journals.5–10 The small length scale of microreac-
tors reduces transport limitations, giving nearly gradient-
less conditions desirable for the determination of reaction
kinetics. The reactor miniaturization allows us to carry out
reactions under more precisely controlled conditions than
with conventional macroscale reactors, leading to a possi-
bility of improved yield and selectivity of the desired pro-
ducts. 11–13 In the area of catalytic chemistry, microreactors
are an extremely efficient tool for rapid catalyst screening
and for combinatorial chemistry.14–18 In order to simulate
chemical and biochemical processes in a continuous flow
microreactor a coupled system of convection-diffusion-
reaction in combination with hydrodynamics has been de-
veloped and many studies on microfluidic systems are
available.19–26,27,28 Characterization of micro phenomena,
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like frictional pressure drop and viscous dissipation effects
in microchannels are subject of continuous debate. The
discrepancies among the work of many researchers have
been summarized in review papers.29–31 The use of the Na-
vier-Stokes equations appears to be appropriate for mi-
crochannel flows of liquids as long as the hydraulic diame-
ter (Dh) of system is greater than 100 μm for conduits filled
with Newtonian fluids such as water. Non-Newtonian fluid
effects are expected to be important for polymeric liquids
and particle suspensions flows. Wall slip effects are negli-
gible for liquid flows in microconduits and viscous dissi-
pation effects on the friction factor are negligible in
smooth microchannels, especially for conduits with Dh >
100 μm.29 For the continuum assumption to hold in gase-
ous media the characteristic length should be large enough
and most researchers agree on classifying the flow to be in
continuum for Knudsen number (Kn) ≤ 10–3. However,
when Kn > 10, molecular level modeling is required to
describe the behavior of the fluid.32,33

The present work is a theoretical and numerical out-
come of an ongoing research on characterizing microreac-
tor performance for different homogeneous, non-homoge-
neous, and heterogeneously catalyzed reactions with non-
linear reaction kinetics. The parallel flow of two immis-
cible fluids with the enzyme catalyzed reaction at the in-
terphase surface in Y-shaped glass microchannel was inve-
stigated at the conditions when the continuum assumption
can be applied.29 It is an attempt to analyze and to forecast
the behavior of reaction-diffusion dynamics in a continu-
ous flow microchannel with the application of a relatively
simple finite difference technique. An implicit finite-diffe-
rence method was used to solve the systems of 2D and 3D
partial differential equations of a second order. Special at-
tention was devoted to non-equidistant differences in or-
der to improve the stability and accuracy of the numerical
solutions. It is shown that the accuracy of the approxima-
tions can be enhanced by mesh refinement in the vicinity
of the domain parts where the variations in field unk-
nowns are expected to be significant. The numerical expe-
riments are analyzed and examined for accuracy, stability,
and theoretical consistency. To investigate the effective-
ness of microreactor performance, we compared the di-
mensionless outlet concentrations of a general second-or-
der homogeneous reaction in a microchannel with that in
the ideal plug-flow and continuous stirred-tank reactor for
a broad range of operating conditions. 

1. 1. Theoretical Background

Let us consider first an irreversible homogeneous
reaction taking place in the microchannel within the flow
driven at a parabolic velocity profile, developed in the
smallest y-dimension. Reactive components A and B enter
the channel in two parallel flows as schematically presen-
ted in Figure 1. Regarding the operating conditions typical
of microchannels, the laminar fluid flow in the x-axis di-

rection is considered (Fig. 1). Flow in microchannel is
predominantly laminar.1 Molecular effects also become
more significant in microchannel when the characteristic
length decreases to the point that the continuum assump-
tion becomes invalid.33 Jähnisch and co-authors3 observed
the laminar flow for Re numbers up to 2000. However,
many researchers realized turbulent flows for much lower
Re numbers. Turbulence effects become very important
for Reynolds numbers above 1000, mainly due to (up-
stream) geometric non-uniformities.29 It was shown that
the channel aspect ratio and the angle of merging of two
inlet channels substantially influence the critical Reynolds
number. The results, obtained for smooth glass channels
with relative roughness around 1%, shown a fast decrease
of the critical Reynolds number (from around 2000 at as-
pect ratio of 2), until the aspect ratio reaches a value of 6
(critical Reynolds number is around 410).34

At laminar flow conditions, the velocity profile fully
developed in the direction of the least dimension  ([W,-W])
can be described as a function of y position only (Eq. 1):

(1)

The reaction formula and the rate equation of an ir-
reversible homogeneous reaction proceeding in the micro-
reactor are as follows:

(2)

where A and B are the reactants and P product; (–rA) and k
are the reaction rate (kmol m–3s–1), and the rate constant
(m3(α+β–1 k mol–(α+β–1)s–1), respectively; cA and cB are the mo-
lar concentrations of the components A and B (kmol m–3s–1);
and α and β are the reaction orders in the kinetics term.

Figure 1. Scheme of the microchannel with a parabolic velocity

profile developed in the smallest dimension.

The mass conservation equations, containing con-
vection, diffusion, and the reaction terms for components
A and B at steady-state conditions in a dimensionless
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form with the associated boundary conditions for 2D par-
tial differential equations are given by:

Component A

(3)

b.c.

(4)

Component B

(5)

b.c.

(6)

where the dimensionless concentrations and coordinates
are defined as

(7)

The dimensionless concentration profiles of both
reactants in the microchannel depend on the following di-
mensionless numbers

(8)

In the Eqs. (3–7) DA and DB are the diffusion coeffi-
cients of the components A and B (m2 s–1), νmax is the maxi-
mum velocity of the parabolic velocity profile (m s–1), and
W is the half width of the channel (m), cA,0 and cB,0 are the
feed concentrations of the components A and B (kmol
m–3). The dimensionless number, defined for each of the
components j, Daj represents the ratio of the characteristic
residence time or fluid motion time scale to the characteri-
stic reaction time, and is called the Damköhler number.35

The Peclet number, Pe, provides an indication of the relati-
ve importance of diffusion (random thermal motion of mo-
lecules within their surrounding environment) and convec-
tion (the transport as a result of bulk motion of a fluid).21,36

The ratio of the molecular diffusivity to the product of the
average velocity of the flow and the characteristic length of
the system perpendicular to the direction of the flow is de-
fined in the literature as well as the inverse value of the
product of Reynolds and Schmidt number, where r is den-
sity (kg m–3), and η is dynamic viscosity (Pa s).37,38

In order to analyze the reaction-diffusion dynamics
of more realistic and industrially relevant processes in mi-
crostructured devices, the enzyme reaction process bet-
ween two immiscible fluids is considered and simulated at
steady-state conditions. As stated in several literature re-
ports,1,6 the fluid flow in microstructured devices is typi-
cally laminar and enables even two miscible fluids to flow
parallel next to each other.27,39 Beside the reaction at the
defined interface with short residence times, the efficient
phase separation with the aqueous-organic interface for-
med in the middle of all regions of the Y-shaped microc-
hannel is an important feature that allows the reuse of aqu-
eous flow with enzyme. The simulation of the heterogene-
ously catalyzed reaction, as schematically presented in
Fig. 2, demands the velocity profile of the two-phase fluid
within the microchannel. Considering the presumptions of

Figure 2. Graphical presentation of the microfluidic device used in simulations: a) scheme of the main channel; b) line drawing of the whole mi-

croreactor with indicated inflow and outflow constituents (dimensions of microchannel used in calculations: width=220 μm, deep = 50 μm, length
= 33.2 cm).

a)

b)
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the position of the interface area in the middle of the hori-
zontal microchannel and by neglecting the compressibi-
lity and gravitational force, dimensionless x-momentum
equations for a fully developed Poiseuille-type flow of
water and organic phase have to be solved.39

As shown in Fig. 2, model set-up comprised a sepa-
rate inflow of water phase with a dissolved enzyme, and
organic phase containing reactants A and B. In the model
description the diffusional transfer of the reactant B
across the water-organic interphase was considered, while
transport of reactant A into the water phase was neglected.
Arising from this, dimensionless 3D partial differential
equations for steady-state conditions in the single pass mi-
croreactor system with the associated boundary condi-
tions are as follows27:

(9)

(10)

(11)

b.c. (Eq. 12):

where variables YB/w and YB/h are dimensionless concentra-
tions of reactant B (cB/cB,0) in water (w) and organic phase
(h), respectively, and XA/h is the dimensionless concentra-
tion of reactant A (cA/cA,0) in the organic phase (/); DA/h,
DB/h and DB/w are molecular diffusion coefficients for reac-
tants in both phases (m2/s) and vr is rate of enzyme reac-
tion (mol/m3s); KP is the partitioning coefficient for reac-
tant B in organic-water system. 

For the selected enzyme model reaction (i.e., enzy-
me catalyzed isoamyl acetate synthesis), the non-linear
kinetic expression for reaction rate assuming the inhibi-
tion by reactant B was used:40

(13)

where dimensionless concentrations of reactant B (cB,0
is inlet concentration) in water YB/w and reactant A (cA,0
is inlet concentration) in organic phase XA/h (/) were
considered. νr,max is maximum reaction rate (mol/m3s),
KB and KA (mol/m3) are binding constants for B and A,
respectively, while Ki,B (mol/m3) is the B inhibition con-
stant.

(12)

Figure 3. 2D and 3D non-equidistant partition of grid points.
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1. 2. Numerical Experiments and Analysis 

The finite differences were used to replace the par-
tial derivates in the model equations (Eqs. 3-12). The dis-
cretization was done by the finite differences on a 2D and
3D Cartesian grid which demands the implicit approach
of solution. The result of discretization of the partial deri-
vatives is the system of non-linear algebraic difference
equations for the dependent variables at each grid point.
The formulation of the mathematical model including all
reaction and flow situations in the microchannel can only
be solved by rigorous numerical procedures, especially
for the highly irregular and complex geometry of the do-
main, and various attempts are being made towards inve-
stigating the complex and non-linear interactions between
convection-diffusion and reaction.20 For example, Micro-
nit Microfluidics BV from the Netherlands offers glass
microreactor chips with a standard channel width/deep
150μm/150μm and channel length 332 mm or 676 mm,
meaning that the ratio of width to length in the grid do-
main is approximately 1 to 2000 or 4500. In two, and de-
finitely in three spatial dimensions many simulations ba-
sed on numerical solutions of such problems can hardly
be performed with a sufficient spatial resolution on a sta-
tic equidistant computational grid, and require dynamic,
adaptive grids. Many authors have recognized that mesh
adaptation can be an effective tool for simulating sharp
fronts or moving interface problems, reducing numerical
dispersion and oscillation, as well as computational costs
and data storages, without reducing the overall level of ac-
curacy. It has been demonstrated that significant improve-
ments in accuracy and efficiency can be made by adapting
the mesh nodes, so that they remain concentrated in re-
gions of sharp fronts or interfaces.41–44

In order to improve the resolution, in particular at
certain locations of the computational domain by conside-
ring the steady-state behavior of the presented problems, a
non-equidistant partition of grid points were developed in
this work. The non-equidistant partitions of grid points for
2D and 3D domains of microchannel are schematically
presented in Figure 3.

Simple mathematical manipulation is needed to
transform the static equidistant of central difference form
with error of O(Δξ2)

(14)

to the non-equidistant finite difference (Eq. 15), as is de-
monstrated for the central finite difference on 2D domain

(15)

where the 2D non-equidistant grid is constructed by the
formulas:

FORMULA

The improved efficiency of the applied non-equidi-
stant finite difference can be graphically observed at the
same partition of grid points in Figure 4. 

The stability and the accuracy of the improved nu-
merical procedure were examined with numerical experi-
ments for cases without chemical reaction (the reaction ra-
te constant in the Eqs. 3-8 was set to zero, k = 0). While the
component A continuously enters at one half of the mi-
crochannel and component B at the other half of the mi-
crochannel, the average concentrations of both compo-
nents at the outlet of the microchannel with a high ratio
length/width are known as the result of the convection-dif-
fusion processes only. In Figure 5.a the dimensionless con-
centration profile for component A is presented for cases
when the dilutions of the components take place in a sin-
gle-pass flow through the microchannel. The predicted di-
mensionless outlet concentration profiles are in excellent
agreement with the reasonably expected outlet concentra-
tions of both components, cA,out/cA,0 = 0.5 (Fig. 5.a,b).

The result of the discretization of the system of 2D
and particularly 3D partial differential equations inclu-
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ding convection-diffusion-reaction terms combined with
the microfluidics description (Eqs. 3-8 with the arbitrary
reaction orders different from one (α, β ≠ 1), and Eqs. 9-
12 for the 3D description of the heterogeneously cataly-
zed reaction), is the system of non-linear algebraic equa-
tions for the dependent variables at each grid point. The
root-finding algorithm based on Newton’s method was ap-
plied to develop an iterative numerical procedure for sol-
ving such complex non-linear systems.

However, in case of 3D description of the heteroge-
neous reaction-diffusion process (Eqs. 9-12) in the form

Mx + R(x) = 0, where M is matrix and R(x) is rational
function, at least 10 times bigger systems have to be sol-
ved and the application of the Newton’s method was
found less efficient in comparison with 2D problems. The-
refore, the iterative procedure in the form

(16)

was applied which enables fast converging to the solution.
Mathematica codes were developed to solve the complex
systems of model equations. 

Figure 4. The example of graphical results of the dimensionless concentration profiles for the component A (Eqs. 3-6, and 8) for the very first part

of the microchannel (width/length = 2/6) at the static equidistant and non-equidistant partition of grid points with the same overall mesh density

(nxm = 60 × 80).

Figure 5. a) – Steady-state dimensionless concentration profile of the component A in the microchannel without a chemical reaction (νav=6.6 ×
10–4 ms–1; DA=2 × 10–10 m2s–1; DB = 5 × 10–10 m2s–1) with the outlet profiles of the same component A at different non-equidistant mesh resolutions

(b); the influence of the density of non-equidistant grid points on the dimensionless profiles of the component B at higher velocity (νav = 13.2 × 10–3

ms–1) at the 3/4 of the microchannel length (c), and at the outlet (d).

a) b)

c) d)
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3. Results and Discussion

Consider first that the reaction follows general 2nd

order kinetics (–rA) = kcAcB and therefore the reaction or-
ders in the reaction terms (Eqs. 3-6, and 8) are equal to
one (α = β = 1). In that simplified case the non-linear
problem can be solved by the iterations of the linear sys-
tems. In addition, the solutions of the mass balance equa-
tions in terms of relative concentration (cA,out/cA,0) for the
ideal mixed-flow reactor and continuous plug-flow reac-
tor are required to compare the performance of different
reactor types with the microreactor. 

Considering a second-order irreversible homogene-
ous reaction, a dimensionless concentration of component
A at steady-state conditions is given by

(17)

(18)

for the ideal mixed-flow reactor, XCSTR, and for the plug-
flow reactor, XPFR. For M = cB,0/cA,0 = 1, the above equa-
tions (Eqs. 17, 18) are simplified to 

(19)

(20)

where Da = k cB,0 L/νav. Using a wide range of theoreti-
cal operating conditions (0.01 < Pe < 10), dimensionless
outlet concentrations as a function of Da were calcula-
ted for both types of ideal macro-reactors (Eqs. 19, 20)
and the microchannel (Eqs. 3-8, where α = β = 1) and
graphically compared in Figure 6. Generally, an increa-
se in the flow rate results in an increase in Pe, and con-
sequently, our model for the microreactor approaches
that for a PFR. At 0.5 < Pe < 10, the model gives close-
to-ideal PFR performance. As expected, a further in-
crease in Pe number (Pe > 10) results in the shifting
away of the model simulations with the PFR curve. Na-
mely, higher values of Pe mean higher velocities and
smaller diffusion coefficients, which is reflected in
shorter residence and reactions times. Only in the case
of very low velocities, expressed as Pe values below 0.1,
the microreactor does shift away from the CSTR beha-
vior (Figure 6). This phenomenon might be explained
by the fact that at such low velocities and higher values
of diffusion coefficients (e.g., Pe = 0.01 at νmax =
0.0001 ms–1 and DA= 6.6 × 10–7 m2s–1) the diffusion of
the components in the flow direction (x-direction) beco-
mes more significant.

The numerical results of the convection-diffusion-
reaction dynamics in the microchannel for the selected
geometry (width/length = 200μm/1cm) based on non-li-
near reaction kinetics are presented in Figure 7 for a wide
range of arbitrary reaction rates orders α and β.

Figure 6. The performances of the ideal PFR and CSTR classical

macro-reactors in comparison with the microreactor for a wide ran-

ge of theoretical operating conditions, expressed as different Pe
numbers (0.01 < Pe < 10).

Figure 7. Averaged dimensionless outlet concentrations of compo-

nents A and B as the function of the variety of the reaction rates or-

ders α and β (–rA = k × cA
α cB

β; k = 0.1 m3(α+β–1) kmol–(α+β–1)s–1;
νmax=0.002 ms–1; DA = 1 × 10–9 m2s–1; DB = 2 × 0–9 m2s–1).
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In order to assure the stability of the described itera-
tive numerical procedure for solving non-linear systems,
simple mathematical manipulation is recommended. Na-
mely, the root-finding algorithm based on Newton’s met-
hod requires the differentiable function f on the Euclidean
n-space. Therefore, we define the power exponents in the
reaction terms DajX

αYβ (Eqs. 3 and 5) as Daj(X
2)α/2(Y2)β/2.

Because the power exponent is usually defined as eα lnX,
the proposed mathematical manipulation assures the sta-
bility of the numerical iteration in cases of feasible appea-
rances of very small but still negative values of dependent
variables X and Y.

Some typical simulated graphical results of the
enzyme reaction process between two immiscible fluids at
steady state conditions (Eqs. 9-12) with the velocity profi-
le of the two-phase fluid within the microreactor are pre-
sented in Fig. 8. The results of the numerical simulation of
a parallel fluid flow in the microchannel with the position
of the interface area in the middle of the channel (Fig. 8.a)
revealed that at steady-state conditions a fully developed
profile takes place very shortly after the beginning of the
microchannel, which was shown also in our previous
work on steady-state two-phase extraction in the micro-
reactor.39 The real values of model parameters for the se-
lected enzyme reaction-diffusion process were used in the

simulations. Molecular diffusion coefficients of acetic
acid (B) and isoamyl alcohol (A) in water (w) and in n-he-
xane (h) were estimated by the Scheibel empirical correla-
tion (DA/h=5.33 × 10–9m2/s, DB/h = 9.85 × 10–9m2/s, DB/w =
1.29 × 10–9m2/s), and the partitioning coefficient KP for
acetic acid in ternary system with water and n-hexane was
found to be 0.0167.45 The kinetic model parameters were
estimated according to the literature and are summarized
in Table 1.40

The results of numerical simulation of reactant B di-
mensionless concentration profile in water phase YB/w and
organic phase YB/h at defined conditions with equimolar
starting reactants concentration 0.5 × 10–3 mol/m3 are pre-
sented in Fig. 8b and c, respectively. As expected due to
the low Kp value of B in organic-water system, the com-
ponent B readily diffused from the organic phase into the

Figure 8. (a) A 3D presentation of a flow pattern of both phases in a microchannel at fw = 10 μl/min and fh = 34 μl/min using Navier–Stokes equa-

tions. Graphical presentation of results of a numerical simulation for YB concentration profile along the microchannel (b) in organic and (c) in aqu-

eous phase at z = 0.5H/W. (d) 3D graphical isosurface presentation of concentration of reactant B YB/w in organic phase.

Table 1. Chosen binding and inhibition constants and kinetic para-

meters used in simulations. 

vr,max·103 KB KA Ki,B
(mol/m3 s)  (mol/m3) (mol/m3) (mol/m3)

0.32 0.26·10–3 0.96·10–3 2.00·10–3

a)

b)

c)

d)
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aqueous phase. As seen from Fig. 8b, it was almost com-
pletely removed from the organic phase and consequently,
the concentration of B in the aqueous phase increased at
the beginning of the microchannel and reached 3-times
higher values than in organic phase due to approximately
3-fold slower flow rate of aqueous phase regarding the or-
ganic phase, while further decrease in acid concentration
was due to the reaction at the two-liquid boundary. 3D
graphical isosurface presentation of dimensionless con-
centration of reactant B in organic phase YB/h is presented
in Figure 8.d where the evident influence of the velocity
distribution on the concentration profile can be observed.
The process optimization and the determination of real ki-
netic parameters are feasible by the developed model and
experimental work.27

4. Conclusions

The theoretical descriptions and analysis of the con-
vection-diffusion-reaction processes for the irreversible
homogeneous and non-homogeneous catalytic reactions
in a microreactor were investigated. Numerical experi-
ments of a 2D model, developed for the specific case wit-
hout a chemical reaction taking place in the microchannel,
accurately predict the reasonably expected outlet concen-
trations of both components. The microreactor model si-
mulations were compared with the ideal plug-flow reactor
and continuous stirred-tank reactor predictions for a broad
range of operating conditions in order to asses under what
conditions (microchannel geometry, diffusion, convec-
tion, chemical kinetics) a given microreactor is more effi-
cient or productive than a classical macro-reactor. The
comparison of the model simulations with the ideal reac-
tor predictions effectively shows close to PFR behavior at
0.5 < Pe < 10. The proposed numerical procedure based
on a relatively simple implicit finite difference technique
which is improved by a non-equidistant partition of grid
points assures accurate, stable, and theoretically consi-
stent solutions of the non-linear systems. The developed
and presented 3D mathematical model comprising of flow
distribution, transport phenomena and enzyme reaction
kinetics, could easily be applied to different reaction types
in homogeneous and heterogeneous systems. Further mi-
croreactor design and process optimization by means of
the use of the optimized microchannel geometry, reac-
tants/enzyme ratio, and the determination of real kinetic
parameters are feasible by the developed model and addi-
tional experimental work.
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Povzetek
Delo predstavlja teoreti~en opis z numeri~nimi eksperimenti in analizo reakcijsko difuzijskih procesov homogenih in

nehomogenih reakcij v mikroreaktorju. Razvit matemati~ni model v brezdimenzijski obliki vklju~uje tudi hitrostni pro-

fil za laminarni tok me{ljivih in neme{ljivih teko~in v mikrokanalu pri stacionarnih pogojih. Rezultati napovedi obna{a-

nja mikroreaktorja so primerjani z izra~uni v klasi~nem kontinuirnem me{alnem in preto~nem reaktorju za primer nepo-

vratne reakcije dveh vstopnih komponent. Primerjava u~inkovitosti razli~nih tipov reaktorjev je podana za {iroko ob-

mo~je obratovalnih pogojev, izra`enih z Pe {tevilom (0.01 < Pe < 10). Za re{evanje kompleksnih nelinearnih sistemov

je predlagana metoda kon~nih razlik, izbolj{ana z uvedbo neekvidistantnih razlik.


