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Abstract
The HOMO-LUMO map is found to be a useful tool for classifying π-electron configurations of fullerenes and identif-

ying research questions about their adjacency spectra.
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1. Introduction: 
the HOMO-LUMO Map 

The HOMO-LUMO map has been proposed as a
qualitative tool for the study of trends in π-electronic
configurations for conjugated systems modelled by vari-
ous classes of chemical graphs.1 The idea is to make a
scatterplot of Hückel HOMO vs LUMO eigenvalues and
investigate the clustering of the results. In Ref.1, the maps
suggested a theorem for eigenvalue bounds on chemical
trees, and a conjecture for more general chemical graphs.
Here, we use this simple device to re-examine some as-
pects of the qualitative theory of the electronic structure of
fullerenes and identify some plausible conjectures. 

In the simple Hückel model, eigenvectors and eigen-
values of the adjacency matrix of the molecular graph of a
π-conjugated system correspond to π molecular orbitals
and their energies (in units of |β|, with respect to an origin
at α). The eigenvalues are arranged in non-decreasing or-
der and, as fullerenes are non-bipartite cubic graphs, they
run from λ1 = +3 to λn > –3. Occupation of the orbitals in
the electronic ground state is determined by the usual tri-
nity of Aufbau and Pauli Principles and Hund’s Rule of
Maximum Multiplicity. The HOMO is the non-empty or-
bital of of highest energy2 and for graphs with even n and
no net charge has eigenvalue equal to λn/2; the LUMO is
the non-fully occupied orbital of lowest energy2 and for
graphs with even n and no net charge has eigenvalue equal
to λ(n/2)+1; if the system has partially occupied orbitals,
HOMO and LUMO have equal eigenvalues.

It is usual to divide electron configurations into open
and closed shells, but a finer classification can be useful.
The six classes based on the HOMO and LUMO eigenva-
lues are three closed and three open: 

(i) If all orbitals contain either zero or two electrons,
the system is a closed shell, and belongs to one of
three sub-classes:3

(ia) Pseudo-closed: λLUMO > 0, 
(ib) Properly closed: λHOMO > 0 ≥ λLUMO, 
(ic) Meta-closed: λHOMO ≤ 0. 
(ii) If there is at least one orbital that is partially oc-

cupied the configuration is an open shell, and be-
longs to one of three sub-classes:1

(iia) Pseudo-open: λHOMO = λLUMO > 0, 
(iib) Properly open: λHOMO = λLUMO = 0, 
(iic) Meta-open: λHOMO = λLUMO < 0. 

2. Fullerenes and 
HOMO-LUMO Maps

Fullerenes are polyhedral carbon cages Cn with 12
pentagonal and (n/2 – 10) hexagonal faces. Since the dis-
covery of the first example, C60,

4 they have been the sub-
jects of intense experimental, theoretical and mathemati-
cal interest.5 Fullerenes are mathematically possible for
n = 20 and all even values n ≥ 24, and as n increases the
number of possible isomers grows rapidly,6 though only
a small subset of these have been observed in experi-
ment.
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Some fullerenes have open shells (pseudo, proper
and sometimes meta7), but the vast majority have closed
shells. Of these, some are properly closed, but most are
pseudoclosed.5,8 Three classes of properly-closed shell
fullerenes are known. These are the leapfrogs, the carbon
cylinders and the sporadic closed shells.

Leapfrog fullerenes Cn have molecular graphs that
can be constructed from the graph of a fullerene Cn/3 with
one third as many vertices by first capping every face (rai-
sing a pyramid on each face) and then taking the dual of
the resulting deltahedral polyhedron.9 As fullerene graphs
exist for all vertex counts 20 + 2h with h ≠ 1, where h is
the number of hexagonal faces, leapfrog fullerenes exist
for all n = 60 + 6h with h ≠ 1, one leapfrog corresponding
to each isomer of the smaller fullerene and where the total
number of hexagons is now 3h + 20. The construction se-
parates the faces of the original fullerene, introducing new
hexagons at all original vertices, and maintaining point-
group symmetry. The first leapfrog fullerene is the experi-
mental isomer of C60, derived from the C20 dodecahedron.
It has been proved that leapfrog fullerenes all have proper-
ly closed shells.10

Carbon cylinders11 are derived by expansion of ico-
sahedral C60 or its D6d analogue C72 along the principal ro-
tational axis. The resulting fullerene consists of a tubular
graphene-like part, made of hexagons, capped in a unique
way by hemispherical portions of the C60/C72 parent. As
successive layers of hexagons are added to the central por-
tion, the caps alternate from mutually eclipsed to stagge-
red positions. Addition of a single belt of five (six) hexa-
gons leads to the D5h isolated-pentagon isomer of C70 (D6h
isolated-pentagon isomer of C84) with a properly closed
shell in which a bonding HOMO lies below an exactly
non-bonding LUMO. This pattern of HOMO and LUMO
eigenvalues is repeated thereafter with every third inser-
tion of a belt of hexagons, leading to a series of five- and
six-fold symmetric cylindrical properly closed-shell fulle-
renes with vertex counts 10(7 + 3k) and 12(7 + 3k), res-
pectively, where k ≥ 0. The pattern is rationalised by con-
sidering surface harmonics.11 The smallest carbon cylin-
der is the second-most abundant experimental fullerene,
C70. Five- and six-fold symmetric cylinders of equal k ha-
ve equal HOMO eigenvalues11 and hence appear at the sa-
me point on the HOMO-LUMO map.

These two classes account for all the known pro-
perly closed fullerene graphs up to 110 vertices. At 112
vertices, and at 116 vertices and beyond, some extra pro-
perly closed isomers are found, all with negative LUMO
values of extremely small magnitude. All have low or tri-
vial point-group symmetry, and in the range 112 ≤ n ≤ 140
are known to have LUMO eigenvalues 0 > λLUMO > –0.03
(A full list for this range is given in Table 3.2 of Ref.5).
The distribution of sporadic isomers, with N the number at
each order n, is: 
n 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 

N 1  0  1  0  1  1  3  0  3  3  4  7  9  4  121

There is no systematic account of the structural fea-
tures (if any) shared by these extra closed shell isomers,
and this puzzle is indicated by their naming as šspora-
dic’.5

Two obvious questions are:
Question 2.1
Is it possible to identify any infinite family among
the sporadic fullerenes?
Question 2.2
Is there any sporadic fullerene that has adjacent
pentagons?

These systematic observations can be represented
on the HOMO-LUMO map. As explained in Ref. 1, the
45º line λHOMO = λLUMO includes all the open-shells and
separates ground from excited states. The triangular re-
gion with this line as hypotenuse contains the three types
of closed shell: pseudo-closed shells above the horizontal
axis, meta-closed shells to the left of the vertical axis, and
properly closed shells in the square bounded by the hori-
zontal and vertical axes (Figure 1). Vertical lines on the
map link systems of equal HOMO eigenvalue (isohomal
systems1); horizontal lines link systems of equal LUMO
eigenvalue (isolumal systems1); lines of unit slope link
systems of equal HOMO-LUMO gap (isodiastemal sys-
tems1). Some researchers12 use the weighted HOMO-LU-
MO separation, n(λHOMO – λLUMO), as a rough measure of
kinetic stability.

In terms of the HOMO-LUMO map, most fullerenes
therefore appear in the triangular region between the
open-shell line and the horizontal. Figure 2 shows the di-
stribution of the 40 fullerene isomers of C40 and the 1812
fullerene isomers of C60. All the C40 isomers, and all but
one of the C60 isomers lie in the pseudo-closed region.
These maps are examples of šhorizontal’ samples of fulle-
renes, where all members of the set have equal vertex
counts; a švertical’ sample, of fullerenes of different or-
ders that share icosahedral symmetry is shown in Figure
3. Icosahedral (I or Ih symmetric) fullerenes have n = 20(i2

+ ij + j2) vertices, with integer parameters i ≥ j, i > 0, j ≥ 0.
In this set, therefore, either n is a multiple of 60, and the
fullerene has a (leapfrog) properly closed shell, or divi-
sion of n by 60 leaves remainder 20, and the fullerene has
an open shell.13

HOMO and LUMO eigenvalues for icosahedrally
symmetric fullerenes with values of n up to several thou-
sand vertices have been tabulated,14 and Figure 3 shows
the trajectories of the two icosahedral subsets as n runs
through the allowed values 20, 60, 80, .... The open-shell
C20 lies at the origin of the map. Other members of the
open-shell series march in monotonically towards the ori-
gin along the map diagonal, starting from C80, at (λ, λ),
where where λ is the middle root of x3 + x2 – 4x +1 = 0 
(≈ 0.27389). The members of the closed shell series fol-
low a curve in towards the origin from the C60 point. Ico-
sahedral C60 has  λHOMO = (√5 – 1)/2 = φ–1 ≈ 0.6180;
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λLUMO =  1/4(3 + √5 – (38 – 2√5)1/2) ≈ –0.1386, where φ is
the golden ratio, leading to a HOMO-LUMO gap of
1/4(√5 – 5 + (38 – 2√5)1/2) ≈ 7.566. 

From extensive calculations on fullerene spectra (as
reported in e.g., Refs. 5, 7, 14, 15), it appears that the point
in the HOMO-LUMO map representing icosahedral C60 is
extremal amongst all fullerenes. At the opposite end of the
stability scale, C20 occupies the origin of the map, and ex-
tensive calculations have not revealed another fullerene
with λHOMO = λLUMO = 0, although multiple zero eigenva-
lues do occur in the spectra of some other fullerenes.16

Some natural questions that arise are therefore: 
Question 2.3
Is there a fullerene with | λHOMO | > φ–1?
Question 2.4
Is there a fullerene with | λHOMO – λLUMO |
> 1/4(√5 – 5 + (38 – 2√5)1/2)?
Question 2.5
Is C20 the only fullerene with a properly open shell? 

The isomer distributions for C40, C60 and the icosa-
hedral fullerenes (Figures 2 and 3) exhibit open and clo-
sed shells of properly and pseudo types in each case. So-
me meta-open shells have been found amongst large fulle-
renes of tetrahedral symmetry. All 21 recorded examples7

with 628 ≤ n ≤ 1000 vertices lie very close to the origin on
the HOMO-LUMO map. All have triply degenerate eigen-
values λHOMO = λn/2 = λn/2+1 = λn/2+2. So far, no meta-closed
fullerenes have been identified, but no proof has been of-
fered that they do not exist. 

Question 2.6 Is there a meta-closed fullerene?

3. Closed-shell Fullerenes 
and HOMO-LUMO Maps 

The three rules given earlier for properly closed
shells lead to different geographical spreads in the maps.
Fullerenes of the leapfrog class appear on the interior of
the properly-closed region; carbon cylinder fullerenes all
have λLUMO = 0 and hence lie on the horizontal line divi-
ding pseudo and properly closed shells; the sporadic clo-
sed-shell fullerenes appear in a very thin just under the ho-
rizontal line (see Figure 4). As graphs that are 3-regular,
all fullerenes have | λHOMO | ≤ √3 and | λLUMO | ≤ √3.1 As
noted above, eigenvalue calculations on fullerenes support
the conjecture that these bounds can be further reduced to
φ–1 for them.

This distribution seems to avoid the lower triangle of
the properly-closed shell quadrant of the map, prompting
the question:

Question 3.1
Are there fullerenes with properly closed shells and
| λLUMO | ≥ | λHOMO |? 

The HOMO-LUMO map also gives some insight in-
to the effect of iterating the leapfrog transformation of a
fullerene. Figures 5 and 6 show the sequence of maps ob-
tained by leapfrogging the C40 and C60 fullerene isomer

Figure 1: The HOMO-LUMO map separa-

tes ground from excited states (shaded area)

and gives a geographical representation of

the types of open and closed shell.

Figure 3: Fullerene HOMO-LUMO maps: Icosahedral fullerenes

with from 20 to 37500 vertices. The eigenvalues are taken from a

list that is extensive, although not complete at large n.14 The map

shows the split into open and properly closed shells according to n
mod 60, as described in the text.

Figure 2: Fullerene HOMO-LUMO maps: The 40 fullerene isomers of C40 (left) and

(right) the 1812 fullerene isomers of C60. The single point in the properly closed-shell qua-

drant corresponds to the experimental structure of C60. 
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sets. Comparison with the maps shown in Figure 2 shows
some clear trends. Most obviously, on leapfrogging, all
the fullerenes move into the upper triangle of the properly
closed-shell quadrant. On repeated leapfrogging, the di-
stribution of the derived fullerenes moves closer to the ori-
gin, as both λHOMO and λLUMO are on average reduced in

magnitude. What is not obvious from the map is that the
isomer with the largest HOMO eigenvalue in each succes-
sive leapfrog generation is the leapfrog of the isomer with
largest HOMO eigenvalue from the previous generation.
Thus, isomer 40:39 at 0.4865, 0.1134 on successive leap-
frogging yields isomers of C120, C360 and C1080 at 0.5207,

Figure 4: The three regions of the HOMO-LUMO map occupied by properly closed-shell fullerenes. From left to right: leapfrog fullerenes (60 ≤ n
≤ 120) occupy the upper triangle of the properly closed quadrant, carbon cylinders (70 ≤ n ≤ 240) lie on the horizontal (λLUMO = 0) boundary of this

quadrant, and the sporadic closed shells (112 ≤ n ≤ 140) lie within the quadrant, and just below the horizontal.

Figure 5: Leapfrog trajectories on the fullerene HOMO-LUMO map. The maps from left to right show the results of leapfrogging the 40 C40 fulle-

renes once, twice and three times, respectively. 

Figure 6: Leapfrog trajectories on the fullerene HOMO-LUMO map. The maps from left to right show the results of leapfrogging the 1812 C60 ful-

lerenes once, twice and three times, respectively. 
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–0.0993, 0.3403, –0.0483, 0.2155, –0.0224, respectively;
isomer 60:1812 at 0.6180, –0.1386 on successive leap-
frogging yields isomers of C180, C540 and C1620 at 0.5141,
–0.0074, 0.3241, –0.0337, 0.2046, –0.0150, respectively.
These particular samples are successively smaller subsets
of the totality of leapfrog isomers, of isolated-pentagon
isomers and of general fullerenes, but the trend suggests
some questions:

Question 3.2
For values of n where a leapfrog isomer exists, is the
isomer with maximum HOMO always a leapfrog?
Question 3.3
For values of n where a leapfrog isomer exists, is the
isomer with maximum HOMO-LUMO gap always a
leapfrog? 
Question 3.4
Is the fullerene C3n of maximum λHOMO the leapfrog
of the fullerene Cn of maximum λHOMO? 
Question 3.5
Is the fullerene C3n of maximum HOMO-LUMO gap
the leapfrog of the fullerene Cn of maximum HOMO-
LUMO gap?

4. Conclusion 

Mapping HOMO and LUMO eigenvalues has hel-
ped to concentrate attention on some of the many open
questions about fullerene eigenvalue spectra. A number of
these questions could be combined into the more general
problem of defining for a given class of graphs the convex
hull of the points on the HOMO-LUMO map. 

In this paper the focus of the discussion of HOMO-
LUMO maps was placed entirely on fullerenes and their
eigenvalue spectra. Possible further applications may be
sought in several directions: (a) considering fullerene de-
rivatives and decorating their HOMO-LUMO maps by de-
termined values of physico-chemical properties, such as
solubility,17 or (b) comparing HOMO-LUMO maps to
theoretical measures of aromaticity.18

Note added in proof: With respect to Question 2.2:
recent computational investigations have shown that there
are in fact some (apparently rare) fullerenes with penta-

gon adjacencies that have properly closed shells. The uni-
que smallest non-IPR fullerene with a properly closed
shell has 120 vertices (P.W.F. and W. Myrvold, to be pub-
lished).
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Povzetek
Zemljevidi HOMO-LUMO so uporabno orodje za klasifikacijo pi-elektronskih konfiguracij fulerenov in za dolo~anje

raziskovalnih problemov o njihovih sosednostnih spektrih.


