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Abstract
The conjecture   ∑

u∈V(G)
dG(u)2 / n(G) ≤  ∑

uv∈E(G)
dG(u)dG(v) / m(G) that compares normalized Zagreb indices attracted recently

a lot of attention1–9. In this paper we analyze analogous statement in which degree dG(u) of vertex u is replaced by its ec-

centricity εG(u) in which way we define novel first and second Zagreb eccentricity indices. We show that    ∑
u∈V(G)

εG(u)2 /

n(G) ≥  ∑
uv∈E(G)

εG(u)εG(v) / m(G) holds for all acyclic and unicyclic graphs and that neither this nor the opposite inequality

holds for all bicyclic graphs.
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1. Introduction

The Randi} index10 is one of the most famous mole-
cular descriptors and the paper in which it is defined is ci-
ted more than 1000 times. This is one of the very few pa-
pers that made chemical graph theory and mathematical
chemistry flourish. It is defined by

FORMULA,

where E(G) is set of edges of G and d(x) = dG(x) is degree
of vertex x in G. Obviously,

FORMULA.

Already in this paper, author proposed observing ex-
ponents different from –1/2. Taking λ = 1, one obtains the
very famous the second Zagreb index11.

The first and the second Zagreb indices are among
the oldest and best known molecular descriptors and it has
been shown that they have ability to predict many physi-
cochemical properties of chemical compounds (pa-
pers12–14 and references within). Molecular descriptors are

graph-theoretical invariants used to predict properties of
chemical compounds and they have found many applica-
tions out of which one of the most important is in the ra-
tional drug design. Namely many physical and chemical
properties are strongly correlated with molecular structure
and then QSPR models allow predictions which molecu-
les (out of the many theoretically obtained molecules)
may be of interest.

The first M1, and second M2, Zagreb indices are de-
fined as:

(1)

where V(G) is the set of vertices of graph G. Let us deno-
te by n = n (G) the number of vertices of G and by m = m
(G) the number of its edges. Recently, the system Auto-
GraphX [13,14] (software for making conjuctures created
by G. Caporossi and P. Hansen) proposed the following
conjecture:
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Conjecture 1. For all simple connected graphs, it
holds:

(2)

This conjecture has been disproved1, but it has been
proved that it holds for all graphs with maximum degree
at most four1, for acyclic graphs2, for unicyclic graphs3,4

and it has been shown that it does not hold for bicyclic
graphs4. A crucial role in most of these proofs played the
quantity mij = mij (G) which denotes the number of bonds
connecting vertices of degrees i and j. These quantities ha-
ve been recently extensively studied17–25. 

The degree of a vertex is a natural invariant assig-
ned to a vertex. Another very natural invariant is eccentri-
city εG(u) of a vertex u, namely the maximum distance
from u to other vertices, i.e. εG(u) = max{dG(u,v) :
v∈V(G)}, where dG(u,v) is the distance between vertices u
and v. For instance, in kenograph (graph in which hydro-
gen atoms are neglected) of benzene all vertices have ec-
centricity 3. In octane eccenticites are (in order of the ap-
periance of atoms) 7, 6, 5, 4, 4, 5, 6 and 7.

The invariants based on vertex eccentricities attrac-
ted some attention in chemistry12,26. In an analogy with
the first and the second Zagreb indices, we define now the
first, E1, and second, E2, Zagreb eccentricity indices by

FORMULA.
(3)

In the present paper, we study whether and in which
cases the normalized versions of these novel indices E1

and E2 satisfy an equation comparable to equation (2). Na-
mely, we want to compare

(4)

In this paper we show that

(5)

holds for all acyclic and unicyclic graphs. At the end of
this paper, we present two bicyclic graphs such that ine-
quality (5) holds for one of them, while another one satis-
fies just the opposite inequality. In such a way it is shown
that for general graphs the inequality (5) is not always va-
lid. The same is true for its opposite inequality.

2. Acyclic graphs

The center of the tree is a vertex with the minimal
eccentricity. It is well known that tree has either one cen-
ter or two adjacent centers. The path connecting a vertex

with its most distant vertex is called eccentric. It is well
known that:

1) if tree has only one center, then each eccentric
path passes through this vertex;

2) if tree has two centers, then each eccentric path
passes through the edge connecting these two
centers.

Let us prove:
Theorem 2. Let G be a simple connected acyclic

graph (tree). Then,

Proof: Let us distinguish two cases:
CASE 1: G has one center c.
Let φ: E(G) → V(G) {c} be the function which

maps edge uv to one of its terminal vertices (u or v) which
is more distant from the center c. Note that this function is
a bijection. It holds:

CASE 2: G has two centers c1 and c2. Let χ: E(G)
c1c2 → V(G) {c1c2} be the function that maps edge uv to
one of its terminal vertices which is more distant to c1 and
c2. It holds:

This proves the Theorem. �

3. Unicyclic Graphs

Let us start with the following Lemmas:
Lemma 3. Let n ≥ 2 and let x0, x1, ... xn be positive

\
\

\
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integers such that |xi – xi+1| ≤ 1 for each i = 0, ... n – 1 and
x0 = xn. Then,

.

Proof: Suppose to the contrary and let N be the
smallest number such that there are positive integers y0,
y1, ... yN such that |yi – yi+1| ≤ 1  for each i = 0, ..., N – 1, y0

= yN and ∑
N–1

i=0
yi

2 < ∑
N–1

i=0
yiyi+1 . Suppose that N ≥ 3, because other-

wise contradiction simply follows. Note that there is no j
∈ {0, ..., N – 1} such that yj = yj+1, because otherwise let n
= N –1 and x0 = y0, …, xj = yj, xj+1 = yj+2 , …, xN–1 = yN and
then it holds:

FORMULA,

which is in contradiction with minimality of N. Let yj =
max {y0, ..., yN–1}. Distinguish two cases:

CASE 1: j ≠ 0.
Note that yj–1 = yj+1 = yj – 1. Let n = N – 1 and x0 = y0,

…, xj–1 = yj–1, xj = yj+1, xj+1 = yj+2, ..., xN–1 = yN. We have:

which is in contradiction with minimality of n.

CASE 2: j = 0.
Completely analogously as Case 1.
In all cases the contradiction is obtained and Lemma

3 is proved. �

Lemma 4. Let G be any graph and let u and v be two
adjacent vertices in G. Then, |εG(u) – εG(v)| ≤ 1.

Proof: Just note that for each vertex w ∈ V(G), it
holds |dG(u,w) – dG(v,w)| ≤ 1. �

Let G be unicyclic graph and let us denote by C =
C(G) its unique cycle. Let G’ be a graph obtained by dele-
tion of all edges in E(C). Note that components of G’ are
trees such that each of them has exactly one vertex in C. A
tree with its vertex in C being x we denote by Tx. Let us
denote by X = X(G) the set of all vertices in C that corres-
pond to components that are not just a single vertex.

Let us prove:
Theorem 5. Let G be a unicyclic graph. Then,

Proof: Note that n(G) = m(G) for unicyclic graphs,
hence we need to prove that

,

i.e. that

Note that

follows from Lemmas 3 and 4. Hence, it is sufficient to
prove that

for each x ∈ X. Let us fix one x ∈ X. Let y be one of the
furthest vertices from x in G. If y ∉ Tx, then let Tx' be a
tree obtained from Tx by adding pendant path of length
d(x,y) to vertex x. Otherwise, let Tx' = Tx. Let Γx be the set
of vertices with the smallest εG in Tx. Let us distinguish
two cases:

CASE 1: x ∈ Γx.
Let φx : E(Tx) → V(Tx) {x} be the function that

maps edge uv to one of its terminal vertices that is more
distant from x. Note that this function is a bijection. It
holds:

CASE 2: x ∉ Γx. 
Γx is the center of Tx' and hence it consists of either

one or two vertices (none of which is x). Let us distinguish
two subcases:

SUBCASE 2.1: Γx = {c}.
Let l be a leaf on the maximum distance from x and

let Px be a path from x to l. This path passes through c, be-
cause it is an eccentric path in Tx. Let d(x,c) = p + 1 and
d(c,l) = q. Note that q ≥ p + 1.

Let φx': E(Tx) E(Px) → V(Tx) V(Px) be the function
that maps edge uv to one of its terminal vertices which is

\\

\
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more distant from c (or equivalently from x). Note that
this function is a bijection. It holds:

SUBCASE 2.2: Γx = {c1,c2}.
Let l be a leaf on the maximum distance from x and

let Px be a path from x to l. Since, this is eccentric path in
Tx, then it passes through c1c2. Without loss of generality
we may assume that c1 is closer to x and that c2 is closer to
l. Let d(x,c2) = q + 1 and let d(x,c2) = q. Note that q ≥ p + 1.

Let φx'': E(Tx) E(Px) → V(Tx) V(Px) be the func-
tion that maps edge uv to one of its terminal vertices that
is more distant from c1 (or equivalently form x or c2). No-
te that this function is a bijection. It holds:

\\

All the cases are exhausted and the Theorem 2 is
proved. �

4. Bicyclic graphs
Let Gx be a bicyclic graph with 2x + 2 vertices pre-

sented in Fig. 1:

Figure 1. Graph Gx.

It can be easily calculated that:

Hence,

In such a way it is shown that for general graphs the
inequality (5) is not always valid. The same is true for its
opposite inequality.

5. Conclusions

In this paper, we have shown that ∑
u∈V(G)

εG(u)2 / n(G) ≥
∑

uv∈E(G)
εG(u)εG(v) / m(G) holds for all acyclic and unicyclic

graphs and that neither this nor the opposite inequality
holds for all bicyclic graphs. We propose the further study
of this inequality as an open problem.
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Povzetek
Trditev   ∑

u∈V(G)
dG(u)2 / n(G) ≤  ∑

uv∈E(G)
dG(u)dG(v) / m(G), ki primerja normalizirane Zagreb{ke indekse, je nedavno pritegnila

precej pozornosti.1–9 V tem ~lanku analiziramo analogno trditev, v kateri stopnjo vozli{~a u, dG(u), zamenjamo z njego-

vo ekscentri~nostjo εG(u). Po tej poti definiramo nov prvi in drugi Zagreb{ki indeks ekscentri~nosti. Pokazali bomo, da

neenakost    ∑
u∈V(G)

εG(u)2 / n(G) ≥  ∑
uv∈E(G)

εG(u)εG(v) / m(G) dr`i za vse acikli~ne in eno-cikli~ne grafe in da niti ta, niti nas-

protna neenakost ne dr`ita za vse dvo-cikli~ne grafe.


