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Abstract
A classical virtual combinatorial chemistry approach (CombiChem) was applied for combinatorial generation of 5590

novel structurally-similar 6-fluoroquinolone analogs by using a virtual synthetic pathway with selected primary (43)

and secondary amines (130). The obtained virtual combinatorial library was filtered using an in-house developed set of

cheminformatics drug-likeness filters with pre-integrated Boolean options (TRUE/FALSE) for compounds reduc-

tion/selection. The retained number (304) of fluoroquinolone analogs (with TRUE outcome) defines the drug-like che-

mical space (CombiData). Quantitative structure-activity relationships (QSAR) study on these 304 virtually generated

6-fluoroquinolone analogs with unknown activity values was performed using a pre-built five-parameter multiple linear

regression (MLR) model developed on a set of compounds with experimentally determined activity values (Rtr =

0.8417, Rtr-cv = 0.7884). The obtained activity values for the unknown compounds together with the model results were

used to define the applicability domain (AD). The obtained AD offers a good graphical representation and establishment

of structure-activity relationships (SAR) which could be used for design of new 6-fluoroquinolones with possible better

activity.

Keywords: Tuberculosis, fluoroquinolones, DNA gyrase, CombiChem, QSAR, Multiple Linear Regression

1. Introduction

Tuberculosis (TB), the acutely transmissible bacte-
rial infection, is still one of the leading threats worldwide.
The causative agent of tuberculosis, Mycobaterium tuber-
culosis, is a persistent pathogen that latently infected ap-
proximately one third (two billion people) of the human
population and around two million people die from tuber-
culosis every year worldwide (World Health Organiza-
tion, 2003).1 The tuberculosis in first instance is caused by
the pathogen M. tuberculosis, but there are also several ca-
ses where the microorganisms such as M. fortuitum, M.
smegmatis and M. avium-intracellulare complex (MAC)
are involved in the TB development.

Although tuberculosis can be cured with chemothe-
rapy, the whole treatment is extensively long and takes
around 6–9 months. The major factors which often lead to

development of drug resistant as well as deadly multidrug
resistant tuberculosis strains, are ascribed to the durability
of the treatment, the toxicity of drugs and very frequently
the poor patient compliance to the therapy regimen. The
increasing problem of multidrug resistant tuberculosis
strains is one of the challenges for design and develop-
ment of new chemotherapeutics which will not only be ac-
tive against resistant mycobacteria, but also shorten the
length of therapy.2

The current chemotherapy of tuberculosis is based
on drugs which act as cell wall biosynthesis inhibitors
(isoniazide, ethambutol, ethionamide, cycloserine) as well
as nucleic acid synthesis inhibitors (rifampicin, quinolo-
nes).3 The last (quinolones) are particularly interesting be-
cause of their quite invasive mechanism of bactericidal ac-
tion. One of the validated molecular targets of antituber-
cular drugs in mycobacteria is DNA gyrase, a unique bac-
terial type II topoisomerase enzyme responsible for ca-
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talysis of the process of introduction of negative super-
coils into the double-stranded bacterial DNA molecule.4

This bacterial enzyme forms a functional heterodimer
A2B2 consisting of two major subunits, GyrA and GyrB.
The GyrA subunit is responsible for the process of brea-
kage and reunion of the double-stranded DNA, where
GyrB is also involved. Another bacterial enzyme is type
IV topoisomerase that also forms a heterodimer and toget-
her with the topoisomerase II is involved in the process of
controlling the topological state of DNA molecule.5 The
gyrase is important for activation of the process of DNA
replication and elongation, while topoisomerase IV is res-
ponsible for relaxation of the DNA strands.6,7 Fluoroqui-
nolones belong to the quinolone’s group of inhibitors
which inhibit gyrase/topoisomerase IV. Their mechanism
of action is based on the inhibition of the process of DNA
synthesis in mycobacteria through a cleavage of the native
mycobacterial DNA molecule in the complex formed bet-
ween the DNA gyrase and type IV topoisomerase. These
processes lead to topological perturbation of DNA and
bacterial cell death.8

Quinolones belong to the class of broad-spectrum
chemotherapeutics originating from the nalidixic acid
which is the parent of the group. One of the important va-
rieties of quinolone antibacterials is the 6-fluoroquinolone
subset, which have an F atom attached to the central ring
system at the 6 position (Figure 1).

Structure-activity relationships (SAR) studies show
that main quinolone core (1,4-dihydro-4-oxo-3-pyridine-
carboxylic acid moiety) is most important for activity.9 The
substitution with F atom at position 6 is important and will
result in greatly enhanced anti-mycobacterial activity. The
position 1 of the main ring system, can also be substituted
(lower alkyl substituents such as methyl, ethyl, and espe-
cially cyclopropyl, enhance potency and efficiency). These
substitutions result in increased activity and metabolic sta-
bility of the drug through a steric bulk. Ring condensations
at the positions [1,8], [5,6], [6,7] and [7,8] can also signifi-
cantly increase the activity. Substitutions at position 2 of
the main scaffold significantly reduce activity and potency,
but on the other hand the positions 5, 6, 7 (especially), and
position 8 of the fused ring core system greatly increase
the anti-mycobacterial activity and potency.10

The development of new SAR rules is one of the major
challenges in modern drug discovery. The total number of
molecules with “drug-like” characteristics has been estima-
ted to be approximately 1063.11,12 The medicinal chemist’s
purpose is not to investigate such large pool of compounds,
but to generate, isolate and identify some discrete sub-spaces
of compounds that interact with the biological systems.13 The
majority of these frequently used methods need a previous
knowledge (knowledge-based methods) about the mecha-
nism of action of the agent under investigation.14 Such a met-
hod for generating “drug-like” sub-spaces is the well known
combinatorial chemistry approach. The exploration process
is focused on a small number of high-quality molecules with
good and well established drug-like properties.

The present study involves generation of a high-qua-
lity drug-like space of novel unknown 6-fluoroquinolone
analogs. Virtual compounds were generated using the
combinatorial enumeration and their selection was perfor-
med by using a pre-built statistical model and a compre-
hensive set of calculated molecular descriptors for predic-
tion of the unknown activity values. The ability to naviga-
te through the generated 6-fluoroquinolone’s drug-like
space as well as to investigate and define new possible
SAR increases the chance for selection of new 6-fluoro-
quinolone analogs with possible better activity.

2. Materials and Methods

In order to investigate the practical meaning of es-
tablished QSAR models for prediction of unknown acti-
vity values as well as to make a subsequent selection of
one or more compounds as potentially active 6-fluoroqui-
nolones, we used a combinatorially generated external da-
taset of unknown 6-fluoroquinolone analogs for which the
activity values (pMIC, negative decade logarithm of MIC)
were not known. There are several software packages
which work with the combinatorial algorithm (combinato-
rial enumeration). For these purposes we used ChemBio-
Office Ultra v11.0 (2008) software suite and its specifi-
cally integrated add-on modules for tabular data mining
(CombiChem).15 These modules are supplied with several
useful pre-integrated cheminformatics functions.

For building a high-quality combinatorial library in in-
house conditions a viable approach is to start with an already
built commercial structural database (already known drugs,
other known/unknown compounds, different building-
blocks, etc.). A crucial step before starting with the process of
combinatorial enumeration is pre-filtering of the compounds
(building-blocks) in the database using cheminformatics
fragment-likeness filters such as Astex rule of 3 (Ro3).16 This
procedure ensures the location of building-blocks selected
(potential fragment leads) within the lead-like space. Such a
database (consisting of 941 building-blocks) obtained from
online internet source17 was used as a starting point for reac-
tant selection for combinatorial enumeration.

Figure 1. Generic structure of 6-fluoroquinolone chemotherapeu-

tics.
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2. 1. Combinatorial Chemistry Approach

By following the synthetic methodology of 6-fluo-
roquinolones (generic synthetic reaction) it was easy to
define the generic combinatorial (virtual) synthetic path-
way for in silico generation of a set of structurally-similar
6-fluoroquinolone analogs. In order to ensure that our fi-
nal products will have similar motifs as already known 6-
fluoroquinolones with known and confirmed activity
against mycobacteria, as template for building the combi-
natorial synthetic pathway we used the synthetic sheme of
the well known 6-fluoroquinolone ciprofloxacin.18 Since
the synthetic procedure was performed in a totally virtual
manner (in silico environment), the catalysts and other au-
xiliary compounds involved through the original synthetic
steps were not taken into account. Thus, the virtual combi-
natorial synthetic pathway was reduced to two fundamen-
tal steps (Figure 2):

(1) Amination of the starting material using primary
amines and subsequent cyclization to build a
common 1-monosubstituted (R1) 6-fluoroquino-
lone scaffold (intermediate).

(2) Amination of the intermediate product using se-
condary amines in order to produce 1,7-disubsti-
tuted (R2, R3) 6-fluoroquinolone moiety as a final
product.

2. 1. 1. Reactants Selection for Combinatorial
Enumeration

Substructure search (SSS) algorithm was imple-
mented for selection of reactants subsets (primary and se-
condary amines) which were used for enumerating all
possible combinations (products). This procedure resul-
ted in extraction of all possible substructural fragments
from the starting pool of 941 building-blocks (in which
49 primary amines and 179 secondary amines were pre-

sent) contained in the database. Each entry in the subsets
was visually inspected for presence of non-individualistic
forms (salt forms, dual and triple forms, non-electroneu-
tral forms). These entries were eliminated from the vir-
tual synthetic pathway through a simple filtering proce-
dure employing a Boolean operational algorithm (Y/N
(yes/no)). The retained substructural fragments (43 pri-
mary amines and 130 secondary amines, separately) with
(Y) outcome were subsequently used for combinatorial
enumeration.

Figure 2. Generic virtual synthetic pathway for combinatorial enumeration of 6-fluoroquinolone analogs.

Figure 3. Graphical representation of the algorithm for combinato-

rial enumeration defined by (N1...Ni) which are the building-blocks

(fragments) from the reactant 1 subset, (M1...Mi) are the building-

blocks (fragments) from the reactant 2 subset, whereas ρ is the to-

tal number of the combinatorially-obtained products.



532 Acta Chim. Slov. 2010, 57, 529–591

Minovski and [olmajer:  Chemometrical Exploration of Combinatorially Generated Drug-like Space ...

2. 1. 2. Combinatorial Enumeration

The process of combinatorial enumeration is a
straightforward process of statistical non-repetitive per-
mutation where each fragment of a building-blocks sub-
set (reactant 1) interact with each fragment of another
building-blocks subset (reactant 2) within the previously
defined core (main molecular scaffold) as presented in
Figure 3.

For a system configured of two subsets of reactants
(Figure 2), the total number of final possible products (6-
fluoroquinolone analogs) can be calculated as a multipli-
cation product between each pair of the fragments (reac-
tant 1 and reactant 2). Mathematically this process can be
described with the following simple equation (Eq.1):

(1)

where Ni is the total number of fragments in the reactant 1
subset, Mj is the total number of fragments in the reactant
2 subset, whereas ρ is the total number of the obtained
products.19 Thus, for Ni = 43 (reactant 1, primary amines)
and Mj = 130 (reactant 2, secondary amines), the total
number of all possible combinations (6-fluoroquinolone
structural analogs) will be ρ = 5590. The obtained combi-
natorial library of 5590 structural analogs was subse-
quently used for assessing the quality and for defining the
drug-like chemical space of novel 6-fluoroquinolones.

2. 2. Defining the Drug-like Chemical Space

In order to be bioavailable, a drug molecule must be
transported through the biological membranes to reach the
systemic circulation. According to this postulate, molecu-
lar properties that correlate with the poor membrane per-
meability (in the absence of active transport) can be effec-
tively used as a drug-likeness filter for elimination of un-
desirable molecules. Lipinski et al.20 stated that a drug
molecule overpassing any two of the following rules is li-
kely to be poorly absorbed:

(1) molecular weight (mass) less than 500 Da.
(2) number of hydrogen bond donors (OH/NH

groups) equal or less than 5.
(3) Number of hydrogen bond acceptors (O/N) less

than 10.
(4) Calculated logP less than 5.0 (by ClogP).
Another important molecular parameter that strong-

ly correlates with the membrane permeability is polar sur-
face area (PSA) defined as a sum of van der Waals surface
areas of the polar atoms in the molecule (N and O). Veber
et al.,21 assessed the influence of PSA of the molecule
over the oral bioavailability in rats and found that a drug
molecule will have a poor oral bioavailability if the follo-
wing criteria passed:

(1) PSA equal or less than 140 Å2 (or 12 or fewer H-
bond donors and acceptors).

(2) number of rotatable bonds is equal or less than 10.

According to these definitions, we developed three
different algorithms (Lipinski, Veber and CombiVL (Li-
pinski-Veber combination)) which were implemented as
drug-likeness filtering tools. These drug-likeness filters
were constructed to work as a Boolean operator (TRUE/
FALSE). We assessed our combinatorial library of 5590
structures employing all three filtering algorithms and we
found that CombiVL pre-selectional algorithm offers the
best outcome (304 structures out of 5590 were signed
with TRUE as most promising compounds for further
analysis). The best results (structures marked with TRUE)
were isolated and subsequently used as an external dataset
(CombiData) for prediction of their unknown activity va-
lues (pMICpred-combi) as well as the selection of new possib-
le active principles.22,23 The chemical structures of the
combinatorially obtained 6-fluoroquinolones (CombiDa-
ta, 304 compounds) as well as the selected reactant 1 and
reactant 2 substructural fragments are available as Sup-
plementary material (Table S1).

2. 3. Applicability Domain

According to OECD QSAR Validation Principles, a
QSAR model is usable in the boundaries of its applicabi-
lity domain.24 The applicability domain of a (Q)SAR is
defined as physico-chemical, structural, or biological spa-
ce, knowledge or information on which the training set of
the model has been developed, and for which it is appli-
cable to make predictions for new compounds.25 It should
be described in terms of molecular descriptors of the mo-
del which are the most relevant parameters. The activity
predictions can be made only within the domain’s boun-
daries. Therefore, the applicability domain can be defined
as a theoretical region in the space represented by the mo-
del’s descriptors and the response (predicted activity va-
lues) in which a (Q)SAR gives reliable outcome.

The drug-like chemical space (applicability domain)
of the investigated 6-fluoroquinolones (pre-built five-pa-
rameter MLR model) was calculated using the leverage
approach.26 The plot defined by standardized residuals as
a function of the leverage (Williams plot) was employed
to visualize the drug-like chemical space. The leverage is
defined as a compound’s distance from the centroid of X.
Mathematically, the leverage (hi) of a given compound in
the multidimensional descriptor space, can be calculated
as (Eq.2):

(2)

where xi is the descriptor vector of the compound under
investigation, and the X is the descriptor matrix rendered
from the descriptor values of the training set.27 According
to Eriksson et. al.,28 the cut-off leverage value (h*) is defi-
ned as:

(3)
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where n is the number of compounds in the training set,
whereas p is the number of descriptors used for modeling.
In our model the cut-off value for h* = 0.391 (Eq.3).
Eriksson et. al., proposed that the prediction for com-
pounds with (hi > h* ) can be considered as unreliable, and
vice versa. The value 3 for standardized reziduals in the
Williams plot is frequently used as a limit (cut-off value)
for accepting predictions (3.0 standard deviation units, ±
3.0σ ). The compounds that lie in this region cover 99% of
the normally distributed data.24

2. 4. Prediction of Activity Values

The prediction of activity values (pMIC) for the da-
taset of 304 unknown 6-fluoroquinolone analogs (Combi-
Data) was performed using a pre-built five-parameter
multiple linear regression (MLR) model. For modeling
and testing the predictive performances we employed a
dataset of 65 fluoroquinolone structures (Assay3) active
against M. tuberculosis as well as a large set of approxi-
mately 600 molecular descriptors.29 The selection of stati-
stically significant molecular descriptors for activity was
performed using Heuristic algorithm and intercorrelation
matrix.30 This procedure resulted in a model with five mo-
lecular descriptors most important for activity and simul-
taneous elimination of the molecular descriptors for
which intercorrelation coefficients were more than or
equal than 0.40, i.e. R2(Pi, Pm) ≤ 0.40. An upper limit of
0.40 was proposed for R2 to eliminate the chance correla-
tion.31

The dataset was previously divided using random
dividing approach into training set (Assay3, 46 structures)
and the external validation set (Assay3, 19 structures). The
model was built on the training set (Rtr = 0.8417, Rtr-cv =
0.7884) using MLR method and subsequently was valida-
ted for its predictive power using the external validation
set (Rval = 0.7993). This model was subsequently used for
further analysis and graphical representation of 304 vir-
tual compounds from the drug-like chemical space.

3. Results and Discussion

Combinatorial chemistry approach (CombiChem) as
a methodology for building combinatorial explosion i.e.
defining the chemical space of structurally similar analogs
as well as its exploration employing different cheminfor-
matics tools and algorithms is well documented.32–36 In
order to build a combinatorial library of small structural
analogs for medicinal chemistry purposes (drug-like che-
mical space), first the generic synthetic methodology for
the entity of interest must be taken into account, and se-
cond one or more subsets of building-blocks (structural
fragments) with acceptable quality must be utilized. The
aim of our study was to generate such a combinatorial li-
brary of new structurally-similar 6-fluoroquinolone ana-

logs in a virtual environment using mathematical-chemi-
stry algorithms for combinatorial enumeration as well as
to explore the structural diversity (drug-like chemical spa-
ce) in order to establish SAR rules which could subse-
quently be used for design of new 6-fluoroquinolones
with possible enhanced activity.

Using the approved synthetic pathway of the well
known 6-fluoroquinolone chemotherapeutic ciprofloxacin
(Figure 2) as a template for virtual synthesis for generation
of all possible analog’s combinations and a lead-likeness
pre-filtered set of building-blocks, initially we generated a
large dataset of 5590 compounds. The quality of the com-
binatorial dataset was investigated through analysis of the
druggability properties: MW (molecular weight (mass)),
Hansch-Leo’s calculated partition coefficient for n-octa-
nol/water bi-phase system (ClogP), number of hydrogen-
bond donors (nHBD), number of hydrogen-bond acceptors
(nHBA), polar surface area (PSA, calculated as TPSA (to-
pological polar surface area)) and number of rotatable
bonds (nRB). The druggability was assessed by implemen-
ting hystogram-type of analysis for graphical representa-
tion i.e. properties distribution comparison37 between the
dataset used for modeling (Assay3, 46 structures, Figure
4a)29 and the combinatoral one (5590 structures, Figure
4b). Normal Gaussian distribution was observed for MW,

a)

b)

Figure 4. Hystogram-type of analysis for assessing the properties

distribution. a) Training set (Assay3), 46 compounds.   b) Combi-

natorial set, 5590 compounds.
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ClogP and nRB, whereas for other properties (nHBD,
nHBA and TPSA) an asymmetric distribution was obser-
ved in the two datasets. The peak analysis (point where the
distribution of the property of interest reaches 50%) in Fi-
gure 4a (training set of 6-fluoroquinolone compounds with
approved activity) shows the optimal molecular parame-
ters for drug-likeness: MWtr = 463, ClogPtr = 1.40, nHBDtr
= 2, nHBAtr = 7, TPSAtr = 98, nRBtr = 5. The correspon-
ding mid-50% values (the intervals between the 25% and
75% of the distribution) were approximately: MWtr = 406,
ClogPtr = (–0.09)–2.91, nHBDtr = 1–3, nHBAtr = 6–9,
TPSAtr = 73–121, nRBtr = 3–6. These results apparently
show the attendance of Lipinski’s “rule of five” as well as
Veber’s rules for oral bioavailability as measures for drug-
likeness.20, 21 As a comparison, for combinatorially genera-
ted dataset the situation for property distribution (peak
analysis) was as follows: MWcombi = 585, ClogPcombi =
3.80, nHBDcombi = 2, nHBAcombi = 8, TPSAcombi = 113,
nRBcombi = 9, and the mid-50% values were approximately
in the interval: MWcombi = 516–652, ClogPcombi =
1.27–6.35, nHBDcombi = 1–2, nHBAcombi = 7–9, TPSAcombi
= 87–140, nRBcombi = 6–12 (Figure 4b).

Two out of six parameters (MWcombi and ClogPcombi)
show increased values, while the other parameters
(nHBDcombi, nHBAcombi, TPSAcombi, and nRBcombi) were
again in the drug-likeness boundaries. The increased va-
lues for MWcombi and ClogPcombi, significantly point to the
increased molecular complexity. Hann et al.,38 demonstra-
ted that the probability of a good ligand-receptor interac-
tion, quickly decreases with increased molecular comple-
xity. According to this observation, some sort of drug-lik-
ness pre-filtering must be implemented in order to define
the drug-like chemical sub-space. The distribution analy-
sis results for each property (mean and standard deviation
values) are presented in Table 1.

The drug-like chemical sub-space was assessed
through implementation of three different algorithms (Li-
pinski, Veber, CombiVL (Lipinski-Veber combined fil-
ter)). The best outcome was observed using the third com-
bined filter (CombiVL) which resulted in 304 compounds
out of 5590 combinatorially-generated structures. Such an
algorithm ensures that each of the retained structures have
optimal drug-like properties according to drug-likeness
rules (MW < 500, ClogP < 5.0, nHBD ≤ 5, nHBA < 10,
TPSA ≤ 140, nRB ≤ 10). These filtered 6-fluoroquinolone
compounds define the drug-like chemical space (Combi-
Data) which was used for prediction of unknown activity
values of the compounds (pMICpred-combi).

The activity of the unknown 304 filtered structures
was predicted using a five-parameter MLR model pre-
built on a dataset for which the biological activity values
was known (Assay 3, 65 compounds).29 These results indi-
cated that activity (pMIC) can be correlated with the five
most important molecular descriptors: MSD, D/Dr03,
MATS7p, GATS8e and EEig05d. The MSD and D/Dr03
parameters belong to the class of topological and constitu-
tional parameters and clearly describe the importance of
the shape i.e. main quinolone core (1,4-dihydro-4-oxo-3-
pyridinecarboxylic acid moiety) for activity. On the other
hand, MATS7p, GATS8e and EEig05d, are molecular
descriptors from the class of topological and electro-topo-
logical parameters. These molecular parameters describe
the possibility for good accomodation of the drug into the
binding pocket (GyrA subunit) as well as possible π-π
stacking interactions between the aromatic quinolone
scaffold and planar aromatic systems into the bacterial
DNA molecule. Such an interaction will procure a topolo-
gical stress of the DNA, inhibition of the replication/trans-
cription processes and cell-death.39 EEig05d alone is also
a pure electrostatic parameter and it is of significant im-
portance for the anti-mycobacterial activity. This molecu-
lar descriptor, clearly indicates that in vitro/in vivo anti-
mycobaterial activity against M. tuberculosis, is poten-
tially dependent on the charge indices for the O atom (sp2)
of the carboxyl and carbonyl group in the main core (Fi-
gure 1). This molecular parameter describes the possibi-
lity for establishing hydrogen bonding interactions bet-
ween these substituents and the amino acid residues wit-
hin the GyrA binding pocket. Another electrostatic para-
meter in the model is the GATS8e. This parameter suggest
that the position 6 of the main 6-fluoroquinolone core is
of significant importance for good accomodation of the
molecule into the active binding site and suggest the pos-
sibility of establishing an electrostatic interaction between
the F atom in position 6 and the target (possible inter-mo-
lecular electrostatic interactions with the amino acid resi-
dues of the GyrA subunit active site).39 These electrostatic
interactions may result in enhanced binding of the 6-fluo-
roquinolone analog to the complex.40 The parameters
(molecular descriptors) used for modeling/prediction with
their detailed description are presented in Table 2, whe-

Table 1. The property distribution analysis results for the training

set and the combinatorial set (Ntr, number of training set objects;

Ncombi, number of combinatorially generated compounds; Prop,

Property; StDev, Standard Deviation).

Ntr Prop Mean StDev
MWtr 462.90 105.90

ClogPtr 1.40 2.00

46
nHBDtr 1.96 0.70

nHBAtr 7.44 1.38

TPSAtr 97.61 28.92

nRBtr 4.85 2.29

Ncombi Prop Mean StDev
MWcombi 584.800 58.660

ClogPcombi 3.842 2.137

5590
nHBDcombi 1.524 0.704

nHBAcombi 7.820 0.934

TPSAcombi 113.400 26.980

nRBcombi 9.376 2.524
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Table 2. Specification of molecular descriptors used for modeling/prediction (C, Constitutional; T, Topological; E, Electrostatic).

ID Descriptor Source Definition Class
1 MSD DRAGON Mean square distance index (Balaban) T

2 D/Dr03 DRAGON Distance/detour ring index of order 3 C/T

3 MATS7p DRAGON Moran autocorrelation-lag7/weighted by atomic polarizabilities T/E

4 GATS8e DRAGON Geary autocorrelation-lag8/weighted by atomic Sanderson electronegativities T/E

5 EEig05d DRAGON Eigenvalue 05 from edge adj. matrix weighted by dipole moments T/E

Table 3. The experimental vs. predicted activity values for training set compounds (pMICexp-tr, pMICpred-tr)

together with the numerical values of the molecular descriptors involved in the modeling procedure.

ID pMICexp-tr pMICpred-tr MSD D/Dr03 MATS7p GATS8e EEig05d

1 –0.477 0.360 0.204 0.000 0.239 0.519 3.287

2 1.939 0.797 0.203 0.000 0.321 0.562 2.909

3 0.523 0.369 0.222 0.000 0.272 0.663 2.843

4 –0.544 –0.109 0.200 0.000 0.430 0.627 3.228

5 1.000 1.227 0.197 35.550 0.386 0.452 3.320

6 –0.146 0.130 0.197 0.000 0.386 0.452 3.306

7 1.301 0.558 0.200 0.000 0.235 0.459 3.285

8 0.301 0.719 0.205 0.000 –0.111 1.388 3.312

9 –0.204 –0.528 0.205 0.000 0.380 2.388 2.688

10 –0.301 0.263 0.222 0.000 0.303 0.646 2.853

11 0.602 1.185 0.211 36.263 0.250 0.653 3.257

12 2.000 2.289 0.204 34.391 –0.004 0.573 3.237

13 1.509 0.393 0.197 0.000 0.118 1.257 3.285

14 0.903 1.510 0.221 36.985 0.205 0.781 2.941

15 2.398 2.369 0.203 37.719 0.005 0.484 3.291

16 1.222 1.650 0.197 38.954 0.278 0.647 3.255

17 2.699 2.787 0.197 83.212 0.312 0.675 3.323

18 1.921 1.458 0.201 37.496 0.386 0.356 3.200

19 1.796 2.063 0.203 37.719 0.085 0.516 3.301

20 0.222 0.408 0.197 0.000 0.299 0.430 3.319

21 2.799 1.731 0.223 54.141 0.104 0.580 3.341

22 –0.818 –0.157 0.228 0.000 0.081 0.667 3.350

23 –0.716 0.200 0.223 0.000 0.019 0.681 3.350

24 –0.810 0.187 0.222 0.000 –0.029 0.682 3.458

25 –0.799 –0.216 0.225 0.000 0.141 0.621 3.350

26 –0.797 –0.460 0.222 0.000 0.115 0.681 3.553

27 1.523 1.870 0.196 39.096 0.213 0.613 3.286

28 0.108 0.876 0.235 51.151 0.160 0.805 3.340

29 –0.796 –1.369 0.243 0.000 0.228 0.961 3.349

30 –0.496 0.397 0.232 55.659 0.334 0.871 3.393

31 1.204 1.791 0.195 42.157 0.047 1.293 3.393

32 2.527 1.458 0.223 56.156 0.063 0.641 3.566

33 2.572 2.202 0.218 63.619 –0.040 0.661 3.554

34 2.583 1.669 0.218 63.619 0.099 0.660 3.597

35 2.907 2.266 0.218 63.619 –0.044 0.638 3.537

36 2.857 2.354 0.218 63.619 –0.035 0.672 3.459

37 1.966 1.682 0.218 63.619 0.115 0.579 3.597

38 2.222 1.437 0.199 40.052 0.298 0.708 3.291

39 3.000 2.110 0.203 37.719 0.085 0.516 3.276

40 0.409 0.782 0.196 43.134 0.489 1.027 3.275

41 1.903 2.677 0.202 65.911 0.055 0.654 3.459

42 –0.100 –0.999 0.226 0.000 0.328 0.747 3.370

43 0.482 –0.411 0.228 0.000 0.128 0.752 3.367

44 0.796 1.454 0.225 67.219 0.111 0.733 3.596

45 0.495 –0.296 0.215 0.000 0.225 0.668 3.403

46 1.398 1.951 0.207 71.526 0.185 0.748 3.586
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reas the experimental and predicted activity values
(pMICexp-tr, pMICpred-tr) together with the numerical va-
lues of the descriptors used for modeling are showed in
Table 3.

The predicted activity values (pMICpred-combi) for
newly generated set of 304 unknown fluoroquinolones
are in the range between (–1.1041 < pMICpred-combi <
1.7989) and the corresponding MICpred-combi values (anti-
logarithm of pMICpred-combi) are in the range (0.0159 <
MICpred-combi < 12.7087). We opted to choose approxima-
tely 5% (15 compounds) from a pool of 304 combinato-
rially-generated compounds as possible most active com-
pounds with activity values in the range 0.0159 <
MICpred-combi < 0.0970 (lower MIC value, higher activity).
The corresponding pMICpred-combi values for these 15
compounds which were used for assessing the applicabi-
lity domain, are in the range (1.0133 < pMICpred-combi <
1.7989). Chemical structures of these compounds, cor-
responding synthetic codes (synthID = reactant1-reac-

tant2) and predicted activity values (pMICpred-combi,
MICpred-combi) are available in Table 4.

The applicability domain (AD) of the five-parameter
linear model (Williams plot) was assessed employing the
well known leverage approach (Figure 5). Training set ob-
jects (Assay3, 46 compounds with experimental activity
values) used in the model development are presented as
black solid dots, whereas the selected objects from the
combinatorial set (CombiData, 15 compounds) as gray
solid rectangles labeled with the corresponding synthetic
code (synthID).

The analysis of AD for the training set objects shows
that two compounds labeled with the codes 11 and 36 are
outliers. Compound 11 is a typical X-outlier (h > h* =
0.391), whereas compound 36 can be clasified as an 
Y-outlier if the cut-off value for standard deviation is set
as ±2.0σ. Beside this conclusion, the prediction for these
compounds was quite good as presented in Table 3. Ac-
cording to h* cut-off value of 0.391, it is apparent that

Table 4. Chemical structures of the selected compounds (CombiData, 15 compounds), corresponding synthetic codes (synth-

ID = reactant 1-reactant 2) and predicted activity values (pMICpred-combi, MICpred-combi). The most promising 11 chemicals are

signed with bold IDs.

ID reactant1 reactant2 synthID pMIC MIC
pred-combi pred-combi

1 1.1041 0.0787

02 009 02–009

2 1.2783 0.0527

02 018 02–018

3 1.0133 0.0970

02 060 02–060

4 1.5306 0.0295

02 071 02–071
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ID reactant1 reactant2 synthID pMIC MIC
pred-combi pred-combi

5 1.2725 0.534

02 108 02–109

6 1.1009 0.0793

02 113 02–113

7 1.3287 0.0469

02 117 02–117

8 1.7989 0.0159

31 033 31–033

9 1.25242 0.0559

31 038 31–038

10 1.0813 0.0829

31 059 31–059

11 1.7783 0.0167

31 077 31–077

12 1.7964 0.0160

31 079 31–079
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four compounds from the combinatorial set (02–071,
31–033, 34–071 and 35–071) are typical X-outliers. Ex-
cept these compounds, the other 11 combinatorially gene-
rated compounds are in the boundaries of AD with activi-
ty values in the range (1.0133 < pMICpred-combi < 1.7964)
and the corresponding MIC values in the range (0.0160 <
MICpred-combi < 0.0970). According to the frequency of ap-
pearance of the substituents in this compound set, one
could conclude that the building-blocks (02 and 31) attac-
hed into position 1 of the main 6-fluoroquinolone core,
are of significant importance for activity (Table 4). These
fragments belong to the class of linear amides and planar

aromatic amines, respectively. Incorporated into the main
6-fluoroquinolone scaffold, they apparently increase the
possibility of hydrogen-bonding as well as inter-molecu-
lar π-π stacking interactions with the planar aromatic/he-
teroaromatic residues of the duplex mycobacterial DNA.38

The building-blocks incorporated into position 7, belong
to different chemical groups (planar aromatic/heteroaro-
matic rings, carbonyl groups, aliphatic/aromatic esters,
methylsulfonyl groups). The presence of these groups on
the main core increase the possibility of establishing
hydrogen-bonding as well as electrostatic interactions and
π-π stacking interactions with the amino acid residues of
the GyrA subunit’s binding pocket and the DNA aroma-
tic/heteroaromatic parts, respectively.39,40 Thus we believe
that some of the compounds from our generated set of 15
compounds (Table 4, 11 compounds signed with bold
IDs) could be proficiently used as templates for defining
new SAR rules. Moreover, the AD offers a good insight
into the drug-like chemical space of substituted 6-fluoro-
quinolones.

4. Conclusion

A classical virtual combinatorial chemistry ap-
proach was applied for combinatorial generation of a lar-
ge set of new structurally-similar 6-fluoroquinolone ana-
logs with unknown activity values. The combinatorial ex-
plosion (virtual combinatorial library) was filtered using
the well known drug-likeness filtering algorithms (Lipin-

ID reactant1 reactant2 synthID pMIC MIC
pred-combi pred-combi

13 1.2556 0.0555

31 120 31–120

14 1.1392 0.0726

34 071 31–071

15 1.0436 0.0904

35 071 35–071

Figure 5. Graphical representation (Williams plot) of the five-para-

meter MLR model’s applicability domain (AD) together with se-

lected combinatorially-generated compounds.
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ski, Veber, CombiVL).20,21 The retained compounds (304)
defining the drug-like chemical sub-space (CombiData)
were treated chemometrically employing a previously
built five-parameter MLR model for activity predictions
(pMICpred-combi). The selected most important molecular
descriptors describe some of the inter-molecular interac-
tions between the 6-fluoroquinolones and enzymatic su-
bunit (GyrA) and mycobacterial DNA. Furthermore, the-
se parameters/descriptors together with the predicted ac-
tivity values (pMICpred-tr, pMICpred-combi) were used for de-
fining the model applicability domain (AD). The obtai-
ned AD offers a good graphical representation, outliers
identification, navigation within the drug-like chemical
space, as well as a structural insight into the possible li-
gand-(DNA)-enzyme interactions. Our future work will
be directed to use of selected compounds in three dimen-
sional models of complexes between GyrA and the li-
gand.

5. Abbreviations

ATP, Adenosine triphosphate; MIC, Minimal Inhibi-
tory Concentration; CombiChem, Combinatorial Chemi-
stry; CombiVL, Lipinski/Veber rules combination; SAR,
Structure-Activity Relationship; QSAR, Quantitative
Structure-Activity Relationship; CV LOO, Cross Valida-
tion Leave-One-Out; AD, Applicability Domain;
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Povzetek
Uporabili smo klasi~ni pristop kombinatori~ne kemije (CombiChem), s katerim smo generirali 5590 novih, strukturno-

podobnih 6-fluorokinolonskih analogov z virtualno sintezo z izbranimi primarnimi (43) in sekundarnimi (130) aminski-

mi substituenti. Tako dobljeno virtualno kombinatori~no knji`nico smo filtirali z uporabo na{ega niza filtrov »podobno-

sti-z –u~inkovinami« (drug-likeness) z vgrajenimi Booleovimi algebrajskimi operatorji (True/False) za redukcijo/selek-

cijo niza spojin. Preostali (304) fluorokinolonski analogi z opcijo True definirajo »u~inkovinam podobni« kemijski pro-

stor (CombiData). Kvantitativne relacije med strukturo in u~inkovitostjo (QSAR) na teh virtualnih 304 6-fluorokinolo-

nih z neznanimi vrednostmi za biolo{ko aktivnost smo izra~unali z vnaprej razvitim pet-parametrskim modelom na os-

novi multiple linearne regresije (MLR) na nizu spojin z eksperimentalno dolo~enimi aktivnostmi (Rtr = 0.8417, Rtr-cv =

0.7884). Dobljene vrednosti za aktivnosti neznanih spojin skupaj z rezultati iz modela smo uporabili za definicijo dome-

ne aplikabilnosti (AD). Tako dobljena domena aplikabilnosti nudi dobro grafi~no reprezentacijo in vpogled v relacije

struktura-aktivnost za ta niz virtualnih molekul, kar je mo`no uporabiti za na~rtovanje novih 6-fluorokinolonov s poten-

cialno bolj{o biolo{ko aktivnostjo.




