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Abstract
Experimental MS response factors were measured for 36 different saturated and unsaturated volatile organic com-

pounds (VOC) containing carbon, hydrogen and halogen atoms. Chemical structure was encoded using various molecu-

lar descriptors. A quantitative structure-property relationship model was established using the multiple linear regression

models. The cross-validation ability of the created model was estimated by leave-one-out cross-validation procedure.

Error in the cross-validation of response factors was calculated by cross-validation procedure and was 15%, which is

sufficient for the determination of VOCs in the air. The proposed procedure can be used for simultaneous qualitative and

quantitative determination of volatile organic compounds in the atmosphere.
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1. Introduction

Accurate identification and quantification of organic
substances represents one of the key problems during the
gas chromatographic analysis. This problem is even more
pronounced in cases of non-target analyses, that is, in cases
when the number of compounds is unknown. Such type of
analyses is often used in environmental, pharmaceutical
and food research. The number of components is unknown
therefore it is difficult to optimise separation conditions. At
the same time qualitative and quantitative determination is
hindered due to the lack of standard materials.

Gas chromatography coupled with mass spectrome-
try is the technique most often used to solve this problem.
It offers structural information necessary for accurate
identification of individual organic compounds and at the
same time it enables quantification of the same substance.
The identification of organic compounds is a more or less
straightforward procedure and is usually accomplished by
library search. On the other hand accurate quantification
is almost impossible if standard material is absent, becau-
se there is no numerical model that would enable theoreti-

cal calculations of response factor for any particular orga-
nic compound without experimental measurements. In
such cases the theoretical procedures based on molecular
similarity or numerical models based on chemical structu-
re can represent a possibility to overcome this problem.

The first such model was proposed in 60s to calcula-
te response factors for FID detector based on effective car-
bon number.1 The model was further developed in several
consecutive studies.2–5 However, it was shown that even
such developed models can exhibit up to about 25% varia-
tion between the calculated and experimental response
factor.6 They have proposed a FID response factor predic-
tion model based on molecular similarity using multiple
linear regression models. The main drawback of such mo-
dels was the inability to model nonlinear correlations.
Therefore Jalali-Heravi et al. improved QSPR correlation
model by using artificial neural networks (ANNs) as a
modeling technique: they used ANNs for the creation of
the prediction model for FID,7 thermal conductivity detec-
tor8 and electron capture detector9 response factors.

However, none of the mentioned detectors can pro-
vide structural information about the measured chemical
compound and therefore cannot be used in cases of non-
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target analysis. In this study we developed for the quanti-
fication of ozone precursors and some chlorinated volatile
organic compounds present in the atmosphere a quantita-
tive structure-property relationship (QSPR) model for the
prediction of the experimental MS response factors. Since
this is just a preliminary study we have applied only sim-
ple multiple linear regression model, which is known that
can give overestimation of the prediction capabilities. Ho-
wever the main aim of this work was to show that the MS
spectrometric response factors can be reliably determined
for the longer period of time and that molecular descrip-
tors can encode the main structural features of the mode-
led molecules which are important for the modeling of the
MS response factors.

1. 1. Model Creation and Calidation

The QSPR technique usually involves two stages. In
the first step molecular descriptors are found that repre-
sent structural features of the molecule. In a second step
these descriptors are correlated with a selected property to
find a relationship between the structure and its property.

Molecular structures were created by Hyper-
ChemTM. Afterwards, MOPAC software10 was used for the
geometry optimization and calculation of net atomic char-
ges. Using CODESSA software,11,12 367 different topolo-
gical, geometric, informational, electrostatic, electrotopo-
logical and quantum-chemical descriptors necessary for
the creation of the models were calculated. The descrip-
tors employed in the study contain information about the
connections between atoms, symmetry, shape, branching,
distribution of charge, and quantum-chemical properties
of the molecules. It is obvious that one cannot use all the-
se descriptors for the creation of a single prediction mo-
del, because most of the descriptors do not encode any
structural feature that is responsible for the response fac-
tor of the mass-spectrometric (MS) detector and such mo-
del would be most probably coincidental. Therefore a des-
criptor reduction procedure had to be applied. The selec-
tion of structural descriptors was accomplished by appl-
ying the heuristic optimization search in CODESSA soft-
ware which is described in the literature.11,12

The leave-one-out cross-validation procedure per-
formed on the training set was used for the estimation of
cross-validation capabilities of MLR models during struc-
tural descriptor selection. The root mean square (RMS)
error was calculated as well as the correlation coefficient
(q2) for the linear dependence of cross-validated vs. expe-
rimental values. The model with the best cross-validation
parameters was chosen for further studies.

1. 2. Determination of MS Response Factors

The experimental data were obtained by two gas
chromatographs, Varian Star 3400 CX and Varian Star
3600 CX. Both of them were equipped for measurements

of volatile organic compounds in air. The first one was
used in conjunction with a flame ionization detector and
the other was coupled with the Saturn 2000 MS detector.
Both systems were equipped with a 10-way VICI Valve
(Valco Instruments Co. Inc.) and the cryotrap.13 Samples
were injected into a cryotrap, which was cooled with li-
quid nitrogen (–196 °C), by using a helium 6.0 carrier gas.
All connection tubes were made out of stainless steel and
were heated to approximately 100 °C in order to prevent
compounds from liquefying already in the analytical in-
strument. For the separation of compounds a Restek RTX-
5MS column (l = 60 m, 2r = 250 μm, d = 5 μm) was used.
Temperature program was as follows: initial temperature
3 °C (hold time 10 min), temperature gradient 2 °C/min to
140 °C and 20 °C/min to 250 °C (hold time 10 min).

Two multicomponent standard mixtures, Restek
VOC AB-18475 and Matheson Toxi-Mat TO-14 VOC,

Table 1. Experimental and calculated MS response factors

(x10.000)

Name Experimental Cross-validated
RF RF

Pentene 2.05 1.96

Isoprene 1.96 2.68

cis-2-Pentene 2.28 2.06

2,3-Dimethylbutane 2.58 3.47

2-Methylpentene 2.63 3.30

3-Methylpentene 2.64 3.27

1-Hexene 2.59 1.96

n-Hexane 3.54 3.46

Methylcyclopentane 3.36 3.60

2,4-Dimethylpentane 2.82 3.33

Cyclohexane 3.29 4.39

Benzene 3.99 3.89

2-Methylhexane 2.53 3.35

2,3-Dimethylpentane 4.13 3.43

3-Methylhexane 3.18 3.32

2,2,4-Trimethylpentane 3.67 3.40

n-Heptane 3.32 3.57

Methylcyclohexane 4.18 3.74

2,3,4-Trimethylpentane 4.14 3.52

2-Methylheptane 3.73 3.46

3-Methylheptane 4.30 3.42

n-Octane 4.90 3.67

Trichlorofluoromethane 7.71 8.37

1,1-Dichloroethene 4.38 4.04

Methylene chloride 7.72 7.13

1,1-Dichloroethane 3.91 3.41

cis-1,2-Dichloroethene 3.63 4.34

Chloroform 10.4 9.91

1,1,1-Trichloroethane 4.02 4.13

1,2-Dichloroethane 4.23 4.97

Trichloroethylene 5.54 5.06

Toluene 3.51 2.58

1,1,2-Trichloroethane 4.19 5.31

1,2-Dibromoethane 7.85 7.96

Tetrachloroethylene 10.6 10.1

Chlorobenzene 3.42 3.35
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were used for measuring the response factors on GC-MS
system. The certified accuracy of these standards was
10%. Therefore additional calibration of the standards
was performed using a mixture of C1-C6 n-paraffins (Flu-
ka 80311). The certified accuracy of the latter standard
was 2%. The experimental response factors for 36 organic
compounds are presented in Table 1.

2. Results and Discussion

It is known that the MS response factors depend on
the total ionization cross section and the ionizing path
length. These parameters are correlated by molecular geo-
metry and can be modeled by atom additive procedures.14

It can be expected that besides pure geometric parameters,
the electronic configuration of the molecule plays impor-
tant role in its ionization processes as well. Therefore we
have considered modeling of the electron impact MS res-
ponse factors using molecular similarity QSPR procedu-
res. The response factors were experimentally obtained
for 36 organic compounds. The relative reproducibility of
the experimental response factors was around 10%. The
MS response factors remained constant for at least 14
days if no auto-tuning procedure was performed within
this period.

The chemical structures were encoded by various
molecular descriptors present in the CODESSA software.
The MLR models with up to 5 parameters were selected
using the step-wise selection procedure. The selected mo-
dels based on the best cross-validation results are shown
in Table 2. We can see that topological, electrostatic and
geometrical descriptors have been selected to the final
model. They represent information about the size, shape
and electronic properties of the individual molecule. Alt-
hough the best cross-validation results were obtained for
the 5-parameter MLR model, we prefer here the 4-para-
meter MLR model to keep the ratio between the parame-

ter and the data point numbers around 10 and avoid over-
fitting of the prediction model. The cross-validated results
of the final 4-parameter MLR model are presented in Fig.
1 and Table 1.

The regression parameters reported were obtained
from the model constructed from the whole data set of 36
compounds. An extensive model validation was done in
order to prevent insignificant variables to participate in
the created prediction model. Inter-correlation coeffi-
cients were calculated among the descriptors that were
included in the model. The highest value was lower than
0.8, so we can say that the descriptors which were inclu-
ded in the model were not highly inter-correlated. Nevert-
heless, in order to prevent chance correlation, a t-test15

was done for every descriptor included in the model. The
critical value for the Student’s t-distribution for α = 0.01
and 35 degrees of freedom is around 2.8. We can see from
Table 3 that all descriptors are above this value and are
therefore retained in the model.

A close inspection of the selected descriptors gives
some insight into the structural features that determine the
modeled property. In our QSPR study a chemical structu-
re was represented by a four-dimensional vector, the com-

Table 2. Selection of best n-parameter MLR model

Descriptors RMS (cv) R2 q2 F s
1 Relative molecular weight 15900 0.684 0.625 75.8 11800

2 Relative molecular weight 12300 0.813 0.770 73.7 9220

Average information content (order 0)

3 Relative molecular weight 10200 0.875 0.831 76.8 7650

RNCG (relative negative charge) (QMNEG/QTMINUS) (Semi-MO PC)

Maximal net atomic charge

4 Relative molecular weight 7520 0.912 0.885 83.3 6490

RNCG relative negative charge (QMNEG/QTMINUS) (Semi-MO PC)

Minimal atomic orbital electronic population

Principal moment of inertia B / # of atoms

5 Relative molecular weight 6380 0.940 0.913 96.4 5480

RNCG relative negative charge (QMNEG/QTMINUS) (Semi-MO PC)

Minimal atomic orbital electronic population

Principal moment of inertia B / # of atoms

Wiener index

Fig 1. Experimental vs. cross-validated MS response factors
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ponents of which were two electrostatic, one geometric
and one topological descriptor. It is almost impossible to
completely separate structural features that are encoded
by individual descriptors however we can say that relative
molecular weight and “principal moment of inertia
B/number of atoms” encodes the size and the shape of the
molecule. On the other hand, the remaining descriptors
encode electronic configuration of the organic species. It
must be mentioned that the structural interpretation of the
model represents only qualitative information about the
factors that are determining the distribution of electron
impact MS response factors.

The main reason why the influence of individual
factors on any modeled property cannot be quantitatively
evaluated is the mutual correlation of the descriptors in-
volved because it is usually very difficult to obtain ortho-
gonal descriptors that would at the same time create a very
good prediction model.

The cross-validated results allow an estimation of
prediction capabilities of the final model: the q2 and
RMScv parameters were 0.885 and 7521, respectively.
The visual inspection of the linear model does not reveal
any outliers. The differences in the individual experi-
mental MS response factors were almost one order of
magnitude. Therefore we have considered the relative
RMS error as a parameter for the evaluation of the pre-
diction error. The relative RMS error for the obtained
model was around 15%. This is a bit higher than the ex-
perimental uncertainty which was evaluated at 10%, ho-
wever it is still within the estimated inter-laboratory
GC/MS response factor precision, which was found to
be around 19%.16 These results proved that the described
calibration procedure can be used for the determination
of volatile organic compounds in the atmosphere when
standard substances are not available for each individual
organic compound.

3. Conclusions

Experimental MS response factor data were deter-
mined for 36 different saturated and unsaturated organic
compounds and multiple linear regression models were
used for the creation of the prediction model. Due to the
relative the small number of data points, the prediction
abilities of the created model were estimated by leave-
one-out cross-validation. The error in the cross-validation

of the response factors was calculated by a leave-one out
cross-validation procedure and was around 14% based on
the relative RMS error which is slightly less than the ex-
perimental error. Such errors are acceptable for the deter-
mination of VOCs in the air.

The proposed procedure can be used for simultane-
ous qualitative and quantitative determination of volatile
organic compounds in the atmosphere. Further study will
be needed to prove that the described procedure can be
used also for the identification and quantification of oxy-
genated organic species that are formed in the atmosphere
by photochemical oxidation. It should be mentioned that
this is just preliminary study where we wanted to test if
molecular descriptors can be applied for the modeling of
MS response factors. The described problem is rank defi-
cient, so in order to use such modeling procedure for the
routine determination of VOC in non-target analysis and
we will have to develop more robust modeling procedure,
such as, principal component regression, partial least-
square regression or ridge regression.
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Povzetek
Eksperimentalno smo dolo~ili faktorje odziva za masno selektivni detektor za 36 nasi~enih in nenasi~enih hlapnih or-

ganskih spojin, ki vsebujejo ogljikove vodikove in v~asih tudi halogenidne atome. Kemijsko strukturo smo kodirali z

razli~nimi molekularnimi deskriptorji. Z uporabo multiple linearne regresije smo izdelali kvantitativni model, ki pove-

zuje kemijsko strukturo z modelirano lastnostjo. Za oceno napovedne sposobnosti modela smo uporabili navzkri`ni va-

lidacijski test. Tako ocenjena napaka modela za dolo~evanje faktorjev odziva za MS detektor je bila okoli 15 %, kar za-

dostuje pri dolo~evanju hlapnih organskih snovi v zraku. Predlagana procedura se lahko uporablja za kvalitativno in

kvantitativno dolo~evanje hlapnih organskih snovi v atmosferi.


