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Abstract
CP-ANN technique was used to build 54 different QSAR models. The models were built for three sets (assays) of fluo-

roquinolones considering their antituberculosis activity and using different technical parameters (dimension of network

and number of learning epochs). The models served as a reliable basis for ranking by a new powerful method based on

sum of ranking differences (SRD). With the applied SRD procedure we can find the optimal ones. The best model can

be selected easily for the first assay. Two models can be recommended for the second assay, and no recommended mo-

del was found for the assay3.
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1. Introduction

In the age of antibiotics the tuberculosis (TBC) still
represents a global health problem. It treats the develo-
ping countries, where 95% of cases and 98% deaths occur,
and also developed world mostly due its fatal combination
with HIV infections.1 The disease is mainly caused by the
microorganism Mycobacterium tuberculosis or in some
cases by Mycobacterium fortuitum, Mycobacterium smeg-
matis, or Mycobacterium avium-intracellulare complex.
In combat of TBC the chemotherapy plays the major ro-
le.2 Because of the drug resistance, which has been deve-
loped by microorganisms, the searching for new drugs re-
presents an important task in this combat. Some fluoro-
quinolones seem to be promising candidates.3 In this re-
port we present an analysis of Quantitative Structure-Ac-
tivity Relationship (QSAR) models, which were develo-
ped to estimate the activity of fluoriquinolones against the
Mycobacterium tuberculosis. The details on data sets,
which were used to build the models, are given in Section
3. As the modeling technique we selected the Counter

Propagation Artificial Neural Networks (CP-ANN),
which are briefly described in Section 2.4–6 During the de-
velopment of a QSAR model many models are construc-
ted and at the end the crucial question arises, how to select
the best final model? In this report we applied a novel pro-
cedure the Sum of Ranking Differences (SRD) method to
rank the models. The ranking was validated by compari-
son of ranks by random numbers (a kind of simulation
test).7,8 The aim of this study was to find the models,
which can be used for further application, i.e., the predic-
tion of activity for new (untested) compounds.

2. Methods

2. 1. Modeling Algorithm
CP-ANN is often used in QSAR applications. Its

architecture and learning strategy is described in many
textbooks and articles, and therefore, we provide here on-
ly its brief description.4–6 The CP-ANN is a generalization
of Self Organizing Map (SOM), which is indeed a map-
ping from multidimensional descriptor space on two-di-
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mensional map of neurons. It is an iterative procedure ta-
king many learning epochs. The dimension of the network
and the number of learning epochs must be optimized to
get the optimal performance of the model. In our CP-
ANN procedure the SOM technique was applied for divi-
sion of data into training set and the test set.9,10 In this pro-
cedure entire map is divided into several sub-parcels and
from each sub-parcel some objects are randomly selected
into training set and remaining objects to the test set. It is
ensured that both sets cover entire information space equi-
vocally.11–13 It is important to emphasize that in SOM on-
ly independent variables (molecular descriptors) partici-
pate in the training. The CP-ANN is a generalization of
SOM in a way that it includes additionally the property
variables (activity values) in a training procedure.

2. 2. Sum of Ranking Differences

The method has recently been introduced in the field
of chemistry.7 The ranking of models is carried out by the
following way: first, the data should be arranged in a ma-
trix form, chemical compounds were enumerated in the
rows, whereas models to be compared were arranged in
the columns. Each matrix element contains the biological
activity values (minimal inhibitory concentrations –MIC).
The original measured data were also included among the
‘models to be compared’ for checking purposes. The row
averages (consensus, ensemble averaging)13–15 were selec-
ted as reference values. Each (individual) model is ranked
and compared to known, reference values. Second, the ab-
solute values of the differences between the reference and
individual rankings are calculated and summed for each
model and, additionally, for experimental values. In such
a way the sum of ranking differences, SRD values were
calculated for each model and for the experimental values.
The closer is the SRD value to zero (i.e. the closer is the
ranking to the reference value) the better is the model. The
proximity of SRD values shows that the models predict si-
milarly the ordering of MIC values. Groupings of models
can also be observed, whereas their distance show dissi-
milarity from the ordering point of view, i.e. SRD can be
considered as a dissimilarity measure (the smaller its va-
lue, the more similar to the reference value).7,8

2. 3. Comparison of Ranks by Random 
Numbers
Validation of the SRD procedure can be easily car-

ried out by the theoretical distribution of the (random)
SRD values corresponding to the number of compounds,
using simulated random numbers, where simulated “mo-
dels” are formed with the same number of compounds.
The SRD procedure can be carried out for simulated “mo-
dels” many times. When the number of simulated random
“models” is quite large, (above hundred thousands) the re-
sults can be used to characterize the theoretical SRD di-

stribution function with very small error. The theoretical
discrete distribution has been calculated earlier using a re-
cursive algorithm if the number of compounds was small
(n < 14). The normal distribution was applied to approxi-
mate the theoretical (random) SRD distribution function
for large number of compounds, if n > 13.8

3. Data and Models

The data, which consist of chemical structures and
inhibitory activities against Mycobacterium tuberculosis,
were collected from the Internet. The activity is expressed
as the Minimal Inhibitory Concentration (MIC (μg/mL)).
Three data sets (assays) were collected from internet appl-
ying different searching criteria. Assay 1 consists of 66
compounds and was collected using the searching crite-
rion ”fluoroquinolones” in NIAID database.16 Assay 2
consists of 145 fluoroquinolones selected from NIAID us-
ing the criteria ”antituberculous agent”. As several struc-
tures have the same MIC values we eliminated some
structures getting the reduce set of 66 compounds (assay
3). In the next step the molecular descriptors were calcula-
ted with DRAGON and CODESSA software.17,18 All des-
criptors were imported to CODESSA where the heuristic
option was applied for searching of the best ones. On this
way, for each assay, ten descriptors have been selected,
which have been used in CP-ANN.19 Applying the SOM
technique each of the three assays was divided into the
training and the test set. In the assay 1, 48 compounds we-
re selected into training set and 18 into the test set. In the
assay 2 and assay 3 the divisions were: training sets 115
and 46 and test sets 30 and 20, respectively. In our ranking
procedure 16 models for each assay have been taken into
account. For assays 1 and 3 the dimensions 7 × 7, 8 × 8, 9
× 9, and 10 × 10 were considered taking 400, 600, 800,
and 1000 learning epochs. For assay 2 the learning epochs
were the same, on the other hand, the selected dimensions
were 11 × 11, 12 × 12, 13 × 13, and 14 × 14. The details of
models are given in the reference.19 In this report we pre-
sent the ranking of models using the SRD method. The
strategy of this method was outlined above.7,8

4. Results and Discussion

Assay 1: The ranking by SRD for the training and
test sets are given in table 1. It is obvious that model A5 is
the best one considering the training and test sets. Simi-
larly it is striking how far the simulated random SRDs (the
distribution is characterized by percentiles, median, etc.)
are from the SRDs of models. Any statistical test would
suggest significant difference between them. The SRDs of
models, however, are not significantly different from each
other. In the test set model A5, A6, A7, and A8 are equiva-
lent according to the SRD ranking. They can be distin-
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guished from each other using more information (larger
number of compounds – training set) A7 > A4 > A6 > A8
(where the sign “>” means that the previous model is bet-
ter than the later one). The model A4 is better for the trai-
ning set than for the test set. The experimental data were
included into the ranking procedure for checking purpo-
ses: models A1, A2 and A3 are not better than the measu-
red data, their usage should be avoided.

The raw SRD values for training and test sets cannot
be compared directly because the number of compounds
was different. Therefore we recalculated the SRD values
for the same scale between 0 and 100. Figure 1 visualizes
the ranking of models by scaled SRD values.

Figure 1a, b. Scaled SRD values for predictive models for assay 1

for the training set (a) and the test set (b). The mean and standard

deviation of the validation distribution are given in the header.

If the prediction capacity is modeled by the test set
the equivalent models are to be used on equal bases. Ho-
wever, there is no doubt that Model A5 is the best one and
we recommend its usage.

Assay 2: The ranking by SRD for the training and
test sets are given in table 2. Model B5, which is the best
one for training set, is not consistently the best one in this
case. As the number of compounds are larger than in case

of assay 1 the difference between simulated random SRD-
s (the distribution is characterized by percentiles, median,
etc.) and SRDs of models are larger and could be identi-
fied by statistical tests as in previous case: the SRDs of
models are not significantly different from each other. In
the test set the model B3 is the best one, it is clearly distin-
guished from the other models. In the training set the sa-
me model is worse than the experimental one showing
that the split of training and test sets are far from being op-
timal. The experimental values are ranked to the latest po-
sition, showing a clear over-fitting effect for all of the mo-
dels on the test set. The SRD ranking shows: B5 > B6 >
B8 > B4 > B7 > B2 for the training set whereas the same

for the test set is slightly different: B3 > B2 > B5 > B1 >
B7 > B8 > B6 > B4. The scaled SDR values are shown in
Figure 2.

The models of assay 2 should be handled with cau-
tion. Models B5 and B8 could be recommended for furt-
her applications. On the other side, the models B1, B3,
B4, and B6 are not recommended.

Assay 3: The ranking by SRD for the training and test

Table 1: Sum of ranking differences for assay 1, training (48) and test (18) sets

Name A5 A7 A4 A6 A8 exp A3 A1 A2 XX1 Q1 Med Q3 XX19

SRDtrain 76 86 88 92 96 98 114 134 134 650 720 766 812 882

Name A5 A6 A7 A8 A4 exp A3 A1 A2 XX1 Q1 Med Q3 XX19

SRDtest 10 10 10 10 16 18 18 22 22 80 96 108 120 136

XX1–first icosaile (5%), Q1 – first quartile, Med – median, Q3 – last quartile, XX19 – last icosaile (95%)

a)

b)

a)

b)

Figure 2a, b. Scaled SRD values for predictive models for assay 2

for the training set (a) and the test set (b). The mean and standard

deviation of the validation distribution are given in the header.
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sets are given in table 3. It is difficult to select the best mo-
dels consistently for the training and test sets. Most models
are better than the experimental data (except C2 for training
set and C11 for the test set) what indicates the over-fitting
effect. The models C6, C8 and C9 might be selected as ac-
ceptable ones. The difference between simulated random
SRDs (the distribution is characterized by percentiles, me-
dian, etc.) is significant. On the other side, the differences
among SRD values of models are less significant, however,
some groupings can be observed. The best models for trai-
ning and test sets are different indicating that the split of
training and test sets are far from being optimal. The scaled
SRD values for assay 3 are shown in Figure 3. The compa-
rison of models for assay 3 shows that no unambiguous se-
lection of the optimal model can be made.

5. Conclusions

The SRD method was applied to select the optimal
QSAR model. This analysis was performed on training
and test sets. For the first assay we found one model,
which could be selected as the best one and recommen-
ded for further applications. For the second assay we
could select two models, which could be recommended
for further usage. The SRD analysis shown some weak
points of models, like over-fitting and not optimal trai-
ning/test set division. In the third assay the different mo-
dels were found as the best ones for training and test sets.
It follows that no unambiguous selection for an optimal
model can be made.
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Povzetek
V prispevku smo analizirali 54 QSAR modelov, ki so bili narejeni s protito~nimi nevronskimi mre`ami (CP-ANN). Mo-

deli so bili narejeni na treh nizih fluorokinolonov kot potencialnih antituberkuloznih u~inkovinah. Modele smo razvili

ob upo{tevanju razli~nih tehni~nih parametrov, kot sta dimenzija nevronske mre`e in {tevilo u~nih epoh. Na nizu mode-

lov smo uporabili pred kratkim predlagano metodo za hierarhi~no urejanje modelov (SRD), s katero lahko poi{~emo

najbolj zanesljive modele. Z metodo SRD smo za prvi niz izbrali en model, za drugi niz smo predlagali dva modela, za

tretji niz pa nismo na{li modela, ki bi bil bolj{i kot ostali modeli.


