Scientific paper

Apparent Molar Volumes and Viscosity B-Coefficients of Glycine in Aqueous Silver Sulphate Solutions at T = (298.15, 308.15, 318.15) K

Biswajit Sinha,* Pran Kumar Roy and Mahendra Nath Roy*

Department of Chemistry, University of North Bengal, Darjeeling- 734013, India

* Corresponding author: E-mail: biswachem @gmail.com mahendraroy2002 @yahoo.co.in

Received: 08-09-2009

Abstract

Apparent molar volumes (φ_V) and viscosity *B*-coefficients for glycine in 0.005, 0.010, 0.015, and 0.020 mol.dm⁻³ aqueous silver sulphate (Ag₂SO₄) solutions have been determined from solution density and viscosity measurements at (298.15, 308.15, and 318.15) K as a function of glycine concentration. The standard partial molar volume (φ_V^0) and experimental slopes (S_V^*) obtained from the Masson equation have been interpreted in terms of solute-solvent and solute-solute interactions, respectively. The viscosity data were analyzed using the Jones-Dole equation, and the derived parameters *A* and *B* were interpreted in terms of solute-solute and solute-solvent interactions, respectively. The standard volumes of transfer ($\Delta \varphi_V^0$) and viscosity *B*-coefficients of transfer (ΔB) of glycine from water to aqueous Ag₂SO₄ solutions were derived to study various interactions in the ternary solutions. The structure making or breaking ability of glycine has been discussed in terms of the sign of ($\delta^2 \varphi_V^0 / \delta T^2$)_{*P*}. The activation parameters of viscous flow for the ternary solutions were also calculated and explained in terms of transition state theory.

Keywords: Density, Viscosity, Partial molar volume, Viscosity *B*-coefficient, Glycine, Aqueous silver sulphate solutions.

1. Introduction

Amino acids and peptides are the fundamental structural units of proteins and thermodynamic properties of these model compounds in aqueous medium provide information about solute-solvent and solute-solute interactions that help us to understand several biochemical processes such as protein hydration, denaturation, aggregation etc.¹⁻⁴ It has been found that salt solutions have large effects on the structure and the properties of proteins including their solubility, denaturation, dissociation into subunits, and the activity of enzymes.^{5,6} Proteins are complex molecules, and their behavior in solution is governed by a combination of many specific interactions. One approach that reduces the degree of complexity and requires less complex measurement techniques is to study the interaction in systems containing smaller bio-molecules, such as amino acids and peptides. Many cations and anions of neutral salts affect the properties of proteins such as their solubility, stability and biological activity in widely different manner.^{5,6} It is well established that various co-solutes, co-solvents such as guanidine hydrochloride,^{7,8} potassium thiocyanate,⁹ potassium chloride,¹⁰ tetraalkylammonium salts,^{11,12} can act as effective probes of their conformation in solutions.^{13–16}

Thermodynamic properties of amino acids in aqueous electrolyte solution thus provide valuable information about solute-solvent and solute-solute interactions. Hence there has been a number of works^{7–12,21,32} revealing the effect of electrolytic solutions on amino acids. But to the best of our knowledge such studies in aqueous Ag_2SO_4 solutions are rare in the literature. Hence in this paper, an attempt has been made to unravel the various interactions in the ternary systems of glycine + Ag_2SO_4 + water at 298.15, 308.15 and 318.15 K.

Sinha et al.: Apparent Molar Volumes and Viscosity B-Coefficients ...

2. Experimental

2.1. Materials

Glycine (Analar, BDH, purity >99%), and silver sulphate (Ag_2SO_4) were used for the present study. Glycine was purified by re-crystallizing from methanol-water mixture and dried at 373.15 K for 12 h in an infrared drier and then in vacuo over P_2O_5 at room temperature. Ag_2SO_4 (Loba Chemie, India, purity > 98.5%) was recrystallized from concentrated sulfuric acid, cooled, then diluted with de-ionized water and the precipitate was filtered, washed and dried at 120 °C.

De-ionized, doubly distilled, degassed water with a specific conductance $< 10^{-6}$ S cm⁻¹ was used for the preparation of different aqueous Ag₂SO₄ solutions. The physical properties of different aqueous Ag₂SO₄ solutions are listed in Table 1.

Tabele 1: Densities and viscosities of dilferent aqueous Ag_2SO_4 solutions at different temperatures.

Molarity of Ag ₂ SO ₄ in Aqueous solution	Т (К)	$\rho \times 10^{-3}$ (kg m ⁻³)	η (mPa s)
$\frac{1}{0.005 \text{ mol } \text{dm}^{-3}}$	298.15	0.9990	0.751
	308.15	0.9956	0.614
	318.15	0.9907	0.502
0.010 mol dm ⁻³	298.15	1.0005	0.817
	308.15	0.9973	0.725
	318.15	0.9930	0.567
0.015 mol dm ⁻³	298.15	1.0021	0.842
	308.15	0.9988	0.715
	318.15	0.9940	0.577
0.020 mol dm ⁻³	298.15	1.0035	0.821
	308.15	1.0000	0.693
	318.15	0.9965	0.609

2. 2. Preparation of solutions

Stock solutions of glycine in different aqueous Ag_2SO_4 solutions were prepared by mass and the working solutions were prepared by mass dilution. The conversion of molality into molarity was accomplished using the experimental density values. The uncertainty of molarity of the glycine solutions is evaluated to be \pm 0.0001 mol dm⁻³.

2. 3. Density Measurements

The densities (ρ) were measured with an Ostwald-Sprengel type pycnometer having a bulb volume of about 25 cm³ and an internal diameter of about 0.1 cm. The pycnometer was calibrated at the experimental temperatures with doubly distilled water and purified methanol. The pycnometer with experimental liquid was equilibrated in a glass-walled thermostated water bath maintained at \pm 0.01 K of the desired temperature. The pycnometer was then removed from the thermostat bath, properly dried and weighed. The mass measurements were done on a digital electronic analytical balance (Mettler, AG 285, Switzerland) with a precision of \pm 0.01 mg. Adequate precautions were taken to avoid evaporation loses during the actual measurements. An average of triplicate measurement was taken into account. The precision of density measurements was evaluated to be within \pm 3 × 10⁻⁴ g cm⁻³.

2. 3. Viscosity Measurements

The viscosity (η) was measured by means of suspended Ubbelohde type viscometer, calibrated at the experimental temperatures with doubly distilled water and purified methanol. A thoroughly cleaned and perfectly dried viscometer filled with experimental solution was placed vertically in a glass-walled thermostat maintained to \pm 0.01 K. After attainment of thermal equilibrium, efflux times of flow were recorded with a stop watch correct to \pm 0.1 s. At least three repetition of each data reproducible to \pm 0.1 s were taken to average the flow time. The uncertainty in viscosity measurements is within \pm 0.003 mPa s. Details of the methods and techniques of the density and viscosity measurements have been described elsewhere.¹⁷⁻¹⁹

3. Results and Discussion

Experimental values of molarity (*c*), densities (ρ), viscosities (η), and derived parameters at (298.15, 308.15, 318.15) K are listed in Table 2.

3. 1. Apparent Molar Volumes

The apparent molar volumes (ϕ_V) were determined from the solution densities using the following equation:¹²

$$\varphi_V = M/\rho_0 - 1000(\rho - \rho_0)/c\rho_0 \tag{1}$$

where *M* is the molar mass of the solute, *c* is the molarity of the glycine in Ag₂SO₄ + water mixtures, ρ_0 and ρ are the densities of the solvent and the solution respectively. As the plots of φ_V values against square root of molar concentrations (\sqrt{c}) were linear, φ_V values were fitted to the Massion equation:²⁰

$$\varphi_V = \varphi_V^0 + S_V^* \sqrt{c} \tag{2}$$

where φ_V^0 is the partial molar volume at infinite dilution and S_V^* is the experimental slope. The φ_V^0 values have been determined by fitting the dilute data (c < 0.1) to Eq. (2) using a weighted least square fit. Values of φ_V^0 and S_V^* along with the corresponding standard deviation (σ) are listed in Table 3. The estimated uncertainties in φ_V^0 are equal to standard deviation (σ), the root mean square of the deviation between the experimental and calculated φ_V^0 for each data point. The φ_V^0 and S_V^* values for glycine in pure water were obtained from the literature^{21,22} and were used in subsequent calculations.

Table 3 shows that φ_V^0 values are positive and increase with a rise in the molarity of Ag₂SO₄ in the mix-

ture, but decrease as the temperature of the respective mixture increases. This indicates the presence of strong solute-solvent interactions and these interactions are further strengthened at higher molarity of Ag_2SO_4 in the solutions but decreases at higher temperatures probably due to more thermal agitations at higher temperatures.

Tabele 2: Molarities, densities, viscosities, apparent molar volumes and $(\eta_r - 1)/\sqrt{c}$ for glycine in different aqueous Ag₂SO₄ solutions at different temperatures.

с	$\rho \times 10^{-3}$	η	$\varphi \times 10^6$	(η _r – 1)	- <u> </u>	$\rho \times 10^{-3}$	η	$\varphi \times 10^6$	$(\eta_r - 1)$
(mol dm ⁻	⁻³) (kg m ⁻³)	(mPa s)	$(m^{-3} mol^{-1})$	\sqrt{c}	$(\mathrm{mol}\;\mathrm{dm}^{-3})$	(kg m ⁻³)	(mPa s)	$(m^{-3} mol^{-1})$	\sqrt{c}
0	0.005 mol dm ⁻³	of Ag ₂ SO ₄	in aqueous sol	ution	0.01	5 mol dm ⁻²	³ of Ag ₂ SO ₄	in aqueous sol	ution
		T = 298.15	K				T = 298.15	δK	
0.0239	0.9998	0.757	41.37	0.0540	0.0240	1.0028	0.850	46.48	0.0599
0.0320	1.0001	0.759	41.90	0.0622	0.0320	1.0030	0.852	46.70	0.0630
0.0560	1.0008	0.764	43.18	0.0714	0.0560	1.0036	0.865	47.26	0.1140
0.0720	1.0012	0.768	43.90	0.0836	0.0720	1.0041	0.880	47.61	0.1666
0.0880	1.0017	0.772	44.20	0.0942	0.0879	1.0045	0.885	47.93	0.1720
0.0999	1.0020	0.776	44.60	0.1030	0.0999	1.0048	0.898	48.05	0.2100
		T = 308.15	K				T = 308.15	δK	
0.0239	0.9965	0.625	39.24	0.1149	0.0239	0.9995	0.728	43.75	0.1149
0.0319	0.9967	0.628	39.76	0.1200	0.0319	0.9998	0.734	44.73	0.1460
0.0558	0.9975	0.635	41.97	0.1420	0.0558	1.0004	0.748	45.73	0.1960
0.0718	0.9979	0.638	42.58	0.1439	0.0718	1.0009	0.756	45.99	0.2129
0.0877	0.9984	0.642	43.66	0.1530	0.0876	1.0013	0.764	46.34	0.2329
0.0996	0.9987	0.644	43.89	0.1520	0.0996	1.0016	0.769	46.92	0.2380
		T = 318.15	K				T = 318.15	δK	
0.0238	0.9918	0.512	26.99	0.1303	0.0238	0.9948	0.599	41.23	0.2480
0.0318	0.9922	0.513	28.50	0.1320	0.0318	0.9951	0.606	41.57	0.2800
0.0556	0.9932	0.518	30.42	0.1410	0.0555	0.9958	0.619	42.63	0.3039
0.0715	0.9939	0.521	31.06	0.1420	0.0714	0.9962	0.629	44.24	0.3349
0.0873	0.9945	0.523	32.19	0.1470	0.0872	0.9967	0.639	44.82	0.3600
0.0992	0.9948	0.525	34.00	0.1464	0.0991	0.9970	0.644	45.16	0.3644
C	0.010 mol dm ⁻³	of Ag ₂ SO ₄	in aqueous sol	ution	0.02	20 mol dm ⁻²	³ of Ag ₂ SO ₄	in aqueous sol	ution
		T = 298.15	K				T = 298.15	δK	
0.0240	1.0013	0.827	42.59	0.0799	0.0240	1.0041	0.825	50.87	0.0340
0.0320	1.0015	0.829	42.90	0.0850	0.0320	1.0043	0.829	51.10	0.0540
0.0560	1.0022	0.838	43.79	0.1099	0.0560	1.0048	0.843	51.50	0.1119
0.0720	1.0027	0.845	44.18	0.1299	0.0720	1.0052	0.850	51.76	0.1320
0.0880	1.0032	0.852	44.71	0.1449	0.0880	1.0055	0.858	51.90	0.1539
0.1000	1.0035	0.858	45.15	0.1590	0.1000	1.0058	0.867	52.03	0.1769
		T = 308.15	K				T = 308.15	δK	
0.0239	0.9981	0.737	40.82	0.1060	0.0240	1.0006	0.702	49.54	0.0790
0.0319	0.9984	0.739	41.45	0.1093	0.0319	1.0008	0.705	49.75	0.0929
0.0558	0.9991	0.748	42.83	0.1320	0.0558	1.0014	0.715	50.39	0.1350
0.0717	0.9996	0.753	43.45	0.1440	0.0718	1.0017	0.726	50.79	0.1770
0.0877	1.0000	0.760	44.18	0.1610	0.0877	1.0021	0.731	50.99	0.1829
0.0997	1.0004	0.765	44.43	0.1720	0.0996	1.0024	0.739	51.12	0.2100
		T = 318.15	K		_		T = 318.15	δK	
0.0238	0.9939	0.583	38.85	0.1789	0.0239	0.9972	0.633	46.51	0.2499
0.0317	0.9941	0.586	39.76	0.1820	0.0317	0.9974	0.638	46.83	0.2679
0.0556	0.9949	0.594	41.39	0.2017	0.0556	0.9979	0.652	48.78	0.2999
0.0715	0.9954	0.599	42.24	0.2094	0.0715	0.9983	0.663	49.37	0.3320
0.0873	0.9958	0.603	42.99	0.2110	0.0873	0.9987	0.673	49.89	0.3553
0.0992	0.9962	0.605	43.40	0.2110	0.0993	0.9990	0.682	50.28	0.3769

Sinha et al.: Apparent Molar Volumes and Viscosity B-Coefficients ...

Tabele 3: Partial molar volumes and the experimental slopes of Eq. 2 for glycine in different aqueous Ag_2SO_4 solutions with corresponding standard deviations at different temperatures.

T/K	$X \qquad \boldsymbol{\varphi}_V^0 \times 10^6 \qquad S_V^* \times 10^6$		σ		
	(m ³ mol ⁻¹)	$((\mathbf{m}^{9'}\mathbf{mol}^{-3})^{1/2})$			
Pure aqueous solution					
298.15	43.19 ^a	0.864 ^a	_		
308.15	43.79 ^b	0.86 ^b	_		
318.15	44.17 ^b	1.77 ^b	-		
	$0.005 \text{ mol } \text{dm}^{-3} \text{ of A}$	$g_2 SO_4$ in aqueous so	lution		
298.15	38.32	20.12	0.004		
308.15	34.52	30.32	0.020		
318.15	21.22	38.61	0.091		
	0.010 mol dm ⁻³ of A	$g_2 SO_4$ in aqueous so	lution		
298.15	40.14	15.50	0.006		
308.15	37.38	22.69	0.006		
318.15	34.65	28.15	0.007		
	$0.015 \text{ mol dm}^{-3} \text{ of A}$	$g_2 SO_4$ in aqueous so	lution		
298.15	44.92	10.00	0.001		
308.15	41.34	17.55	0.001		
318.15	36.99	26.07	0.001		
$0.020 \text{ mol dm}^{-3} \text{ of Ag}_2 \text{SO}_4 \text{ in aqueous solution}$					
298.15	49.80	7.13	0.001		
308.15	47.96	10.23	0.002		
318.15	42.69	24.56	0.011		

^a values taken from Ref²¹, ^b values taken from Ref²².

These trends in φ_V^0 values are easy to follow from the trends in φ_V values as listed in Table 2 showing that the φ_V values increase with a rise in both the concentrations of glycine and Ag₂SO₄ in the ternary solutions but decrease as the temperature of these solutions decrease. Interestingly φ_V^0 values decreased on the introduction of Ag₂SO₄ in the aqueous solutions (from 0 to 0.005 mol dm⁻³ of Ag₂SO₄ solutions), but after that φ_V^0 values increased monotonically with further addition of Ag₂SO₄ in the aqueous solutions. This is probably due to the perturbation of the arrangement of water molecules in bulk water by the electric field of the constituent ions.

The parameter S_v^* is the volumetric virial coefficient characterizing the pairwise interaction of solvated species in solution,^{23, 24} the sign of S_v^* is determined by the interaction between the solute species. In the present study, S_v^* is found to be positive for all the glycine solutions. For zwiter-ionic amino acids the positive value of S_v^* suggest that the pairwise interaction is dominated by the interaction of the charged functional groups. A perusal of Table 3 shows that S_v^* values are positive and increase as the temperature increases but decrease as the amount of Ag₂SO₄ in the aqueous solutions increases.

The temperature dependence of partial molar volumes (φ_V^0) was expressed by the following relation,

$$\varphi_V^0 = a_0 + a_1 T + a_2 T^2 \tag{3}$$

The values of the coefficients a_0 , a_1 , a_2 of the above equation for different glycine solutions are listed in Table 4.

Tabele 4: Values of various coefficients of Eq. 3 for glycine in different aqueous Ag₃SO₄solutions.

Molariy of Ag ₂ SO ₄ in aqueous solution (mol dm ⁻³)	$a_0 \times 10^6$ (m ³ mol ⁻¹)	$a_1 \times 10^6$ (m ³ mol ⁻¹ K ⁻¹)	$a_2 \times 10^6$ (m ³ mol ⁻¹ K ⁻¹)
0	-75.761ª	0.727 ^a	-0.001 ^a
0.005	-4214.200	28.431	-0.047
0.010	137.040	-0.373	0.001
0.015	-198.360	1.952	-0.004
0.020	-1468.100	10.195	-0.017

^a values calculated using φ_V^0 values from Ref²¹ and Ref²².

The partial molar expansibilities φ_E^0 can be obtained by the following equation,²⁵

$$\varphi_E^0 = \left(\delta\varphi_V^0 / \delta T\right)_P = a_1 + 2a_2 T \tag{4}$$

The φ_E^0 values given in Table 5, for different ternary solutions at different temperatures, show that φ_E^0 values decrease as the temperature and concentrations of Ag₂SO₄ in the aqueous solutions increases.

According to Hepler,²⁶ the sign of $(\delta \varphi_E^0 / \delta T)_P$ is a better criterion in characterizing the long-range structure making or breaking ability of the solutes in solution. The general thermodynamic expression is as follows:

$$\left(\delta\varphi_E^0/\delta T\right)_P = \left(\delta^2 \varphi_V^0/\delta T^2\right)_P = 2a_2 \tag{5}$$

If the sign of $(\delta \varphi_E^0 / \delta T)_p$ is positive or small negative, the solute is a structure-maker; otherwise it is a structure breaker. It is seen from Table 5, glycine predominantly acts as a structure maker and its structure-making ability generally increases with an increase in both the temperature and the amount of Ag₂SO₄ in the aqueous solutions increases.

3. 2. Hydration Number

The number of water molecules (N_W) hydrated to glycine at 298.15 K, can be estimated from the electrostriction partial molar volume φ_V^0 (elect)²² using the relation:

$$N_W = \frac{\varphi_V^0(\text{elect})}{(\varphi_e^0 - \varphi_b^0)} \tag{6}$$

where φ_e^0 is the molar volume of the electrostricted water and φ_b^0 is the molar volume of bulk water. The value of $(\varphi_e^0 - \varphi_b^0)$ is calculated²² to be -3.3 cm³ mol⁻¹ at 298.15 K. The

Sinha et al.: Apparent Molar Volumes and Viscosity B-Coefficients ...

Molariy of	$\boldsymbol{\varphi}_{E}^{0} \times$	10 ⁶ (m ³ mol ⁻¹ k	K ⁻¹)	$\left(\delta \varphi_{\pi}^{0}\right)$
Ag_2SO_4 in	298,15 K	308,15 K	318,15 K	$\left(\frac{\delta \varphi_E}{\delta T}\right)_p \times 10^6$
(mol dm^{-3})	К	K	К	$(m^3 mol^{-1} K^{-1})$
0	0.071 ^a	0.049 ^a	0.027 ^a	-0.002
0.005	0.405	-0.535	-1.475	-0.094
0.010	0.223	0.243	0.263	0.002
0.015	-0.433	-0.513	-0.593	-0.008
0.020	-0.058	-0.282	-0.622	-0.034

Tabele 5: Limiting partial molar expansibilities for glycine in different aqueous Ag₂SO₄solutions at different temperatures.

^a values calculated using φ_V^0 values from Ref²¹ and Ref²².

 φ_V^0 (elect) values can be calculated²² from the intrinsic partial molar volumes of the amino acids, φ_V^{0} ^{27,28} and experimentally determined φ_V^0 values, as follows:

$$\varphi_V^0(\text{Glycine}) = \varphi_V^0(\text{int}) + \varphi_V^0(\text{elect})$$
(7)

The obtained N_W values for glycine at 298.15 K are 2.7, 4.1, 3.5 and 2.1 in pure aqueous solution, 0.005 mol dm⁻³ aqueous Ag₂SO₄ solution, 0.010 mol dm⁻³ aqueous Ag₂SO₄ solution, 0.015 mol dm⁻³ aqueous Ag₂SO₄ solution and 0.020 mol dm⁻³ aqueous Ag₂SO₄ solution, respectively. This means that N_w varies with the solvent composition showing a tendency to decrease with an increase in the concentration of Ag₂SO₄ in the aqueous solutions increases; although there was an initial increase of $N_{\rm W}$ for 0.005 mol dm⁻³ aqueous Ag₂SO₄ solutions on shifting from pure aqueous solutions. This increase in N_w indicates that the increase in the interaction of hydrophobic group of glycine with those of the salt does not reduce the electrostriction of water molecules initially, but leads to an increase in the hydration number N_w but thereafter N_w gradually decreases as the molarity of Ag₂SO₄ in the ternary solutions increase indicating enhanced electrostriction of water molecules due to greater ionic concentrations.

3. 3. Standard Transfer Volume

Standard transfer volume $\Delta \varphi_V^0$ of glycine from pure water to aqueous of Ag₂SO₄ solutions is defined by:

$$\Delta \varphi_{\rm V}^0 = \varphi_{\rm V}^0 (\text{Glycine} + \text{Ag}_2 \text{SO}_4 + \text{Water}) - \varphi_{\rm V}^0 (\text{Water}) \quad (8)$$

The value of $\Delta \varphi_V^0$, by definition, is free from solutesolute interactions and therefore provides information regarding solute-cosolute interaction.⁸ Table 6 shows that $\Delta \varphi_V^0$ values are generally negative and increases monotonically with the concentration of Ag₂SO₄ in the solutions under investigation. In general, the interactions between glycine and Ag₂SO₄ can be summarized as: (i) ion-ion interaction between Ag⁺ and COO⁻ group, (ii) ion-ion interaction between SO_4^{2-} and NH_3^+ groups; (iii) ion-nonpolar group interactions.

Tabele 6: Partial	molar volume	s of tramsfer from	water to different
aqueous Ag ₂ SO ₄	solutions for g	glycine at different	temperatures.

Molariy of Ag ₂ SO ₄ in	$\varphi_V^{\theta} \times 10^6$ (m ³ m cl ⁻¹)	$\Delta \varphi_V^0 \times 10^6$
(mol dm ⁻³)	(m [°] mor)	(m mor)
	<i>T</i> = 298.15 K	
0	43.19 ^a	0
0.005	38.325	-4.865
0.010	40.136	-3.054
0.015	44.918	1.728
0.020	49.802	6.612
	<i>T</i> = 308.15 K	
0	43.79 ^b	0
0.005	34.524	-9.266
0.010	37.379	-6.411
0.015	41.337	-2.453
0.020	47.958	4.168
	<i>T</i> = 318.15 K	
0	44.17 ^b	0
0.005	21.219	-22.951
0.010	34.654	-9.516
0.015	36.994	-7.176
0.020	42.690	-1.48

^a values taken from Ref²¹ ^b values taken from Ref²².

According to the cosphere overlap model of Gurney²⁹ whereas interactions of type (i) and (ii) lead to positive $\Delta \varphi_V^0$ values, type (iii) would lead to negative $\Delta \varphi_V^0$ values. Thus, the negative $\Delta \varphi_V^0$ values for glycine indicate that ion-hydrophobic and hydrophobic-hydrophobic interactions predominate over the ion-hydrophilic and hydrophilic-hydrophilic interactions. The $\Delta \varphi_V^0$ values for glycine at different temperatures have been depicted in Figure 1 as a function of the molarity Ag₂SO₄ in the ternary solutions.

Figure 1: Plots of partial molar volumes of transfer $(\Delta \phi_v^0)$ from water to different aqueous Ag₂SO₄ solutions for glycine at different temperatures.

However, since SO_4^{2-} ion remains comparatively more hydrated than Ag^+ ion in aqueous solutions, they can affect the partial molar volume of glycine to varying degrees. Anyway, the observed trend can also be explained with the following equation: ^{3, 12}

$$\varphi_V^0 = \varphi_{VW} + \varphi_{Void} - \varphi_S \tag{9}$$

where φ_{VW} is the van der Waals volume, φ_{Void} is the volume associated with voids or empty space, and φ_S the shrinkage volume due to electrostriction. Assuming the φ_{VW} and φ_{Void} have the same magnitudes in water and in aqueous Ag₂SO₄ solutions for class of solutes,³⁰ the observed negative $\Delta \varphi_V^0$ values for glycine indicate an increase in shrinkage volume in presence of Ag₂SO₄ and this trend increased with increased temperatures.

3. 4. Viscosity B-coefficient

The viscosity data of the experimental solutions of glycine have been analyzed using the Jones-Dole equation,³¹

$$(\eta/\eta_0 - 1)/\sqrt{c} = (\eta_r - 1)/\sqrt{c} = A + B\sqrt{c}$$
 (10)

where $\eta = \eta/\eta_0$, and η are the viscosities of the solvent and solution, respectively, and *c* is the molar concentration of a solution. A and B are the Jones-Dole constants estimated by a least-squares method and reported in Table 7.

The viscosity *B*-coefficient²¹ reflects the effects of solute–solvent interactions on the solution viscosity and it is indeed a valuable tool to provide information concerning the solvation of solutes and their effects on the structure of the solvent in the local vicinity of the solute molecules. Table 7 shows that the values of the viscosity *B*-co-

Tabele 7: Values of Viscosity *A* and *B* coefficients for glycine in different aqueous Ag_2SO_4 solutions at different temperatures.

Viscosity	T = 298.15 K	T = 308.15 K	T = 318.15 K
coefficients	Pu	e aqueous solu	tion
$\overline{A (10^6 \text{ m}^{3/2} \text{ mol}^{-1})}$	^{/2}) –	_	_
$B (10^6 \text{ m}^3 \text{ mol}^{-1})$	0.134a	0.142 ^a	0.151 ^a
0.005 m	ol dm ⁻³ of Ag ₂ S	O ₄ in aqueous so	olution
$\overline{A (10^6 \text{ m}^{3/2} \text{ mol}^{-1})}$	^{/2}) 0.008	0.078	0.113
	(± 0.001)	(± 0.002)	(± 0.001)
$B (10^6 \text{ m}^3 \text{ mol}^{-1})$	0.289	0.248	0.109
	(± 0.001)	(± 0.002)	(± 0.001)
0.010 m	ol dm ^{-3} of Ag ₂ S	O ₄ in aqueous so	olution
$\overline{A (10^6 \text{ m}^{3/2} \text{ mol}^{-1})}$	/2) -0.001	0.038	0.145
	(± 0.002)	(± 0.001)	(± 0.000)
$B (10^6 \text{ m}^3 \text{ mol}^{-1})$	0.494	0.412	0.223
	(± 0.003)	(± 0.001)	(± 0.001)
0.015 m	ol dm ^{-3} of Ag ₂ S	O ₄ in aqueous so	olution
$\overline{A (10^6 \text{ m}^{3/2} \text{ mol}^{-1})}$	/2) -0.098	0.006	0.143
	(± 0.003)	(± 0.001)	(± 0.004)
$B (10^6 \text{ m}^3 \text{ mol}^{-1})$	0.945	0.762	0.714
	(± 0.001)	(± 0.003)	(± 0.001)
0.020 m	ol dm ⁻³ of Ag_2S	O ₄ in aqueous so	olution
$\overline{A (10^6 \text{ m}^{3/2} \text{ mol}^{-1})}$	/2) -0.100	-0.050	0.128
	(± 0.001)	(± 0.002)	(± 0.001)
$B (10^6 \text{ m}^3 \text{ mol}^{-1})$	0.870	0.812	0.771
	(± 0.001)	(± 0.003)	(± 0.001)

 $^{\rm a}$ values taken from ${\rm Ref}^{32}$ and standard errors are given in parentheses.

efficient for glycine in the studied solvent systems are positive, thereby suggesting the presence of strong solute–solvent interactions which increase as the molarity of Ag₂SO₄ in the solutions increase but decrease as the temperature of the solutions increase. The values of the Acoefficient are indicative of solute-solute interactions and in the present study they are in line with the viscosity Bcoefficients for glycine in different aqueous Ag₂SO₄ solutions at the experimental temperatures. Viscosity B-coefficients of transfer (ΔB) from water to different aqueous Ag₂SO₄ solutions have been determined using the relation:

$$\Delta B = B (\text{Aqueous Ag}_2\text{SO}_4 \text{ solution}) - B (\text{Water}) \quad (11)$$

The ΔB values shown in Table 8 as well as depicted in Figure 2 as a function of the molarity Ag₂SO₄ in the ternary solutions at different temperatures are in line with the results obtained from $\Delta \varphi_V^0$ values discussed above.

The viscosity data have also been analyzed on the basis of transition state theory for the relative viscosity of the solutions as suggested by Feakins et al.³³ using the relation,

$$\Delta \mu_2^{0\neq} = \Delta \mu_1^{0\neq} + RT(1000B + \varphi_2^0 - \varphi_1^0) / \varphi_1^0$$
(12)

Sinha et al.: Apparent Molar Volumes and Viscosity B-Coefficients ...

Tabele 8: Viscosity B-coefficients of transfer from water to differ-
ent aqueousAg ₂ SO ₄ solutions for glycine at different temperatures.

Molariy of Ag ₂ SO ₄ in	В	ΔΒ
aqueous solution	$(m^3 mol^{-1})$	$(m^3 mol^{-1})$
(mol dm ⁻³)		
	<i>T</i> = 298.15 K	
0	0.134 ^a	0
0.005	0.289	0.155
0.010	0.494	0.360
0.015	0.945	0.811
0.020	0.870	0.736
	<i>T</i> = 308.15 K	
0	0.142 ^a	0
0.005	0.248	0.106
0.010	0.413	0.271
0.015	0.762	0.620
0.020	0.812	0.670
	<i>T</i> = 318.15 K	
0	0.151 ^a	0
0.005	0.109	-0.042
0.010	0.223	0.072
0.015	0.714	0.563
0.020	0.771	0.620

^a values taken from Ref³².

Figure 2: Plots of viscosity *B*-coefficients of transfer (ΔB) from water to different aqueous Ag₂SO₄ solutions for glycine at different temperatures.

here φ_1^0 and φ_2^0 are the partial molar volumes of the solvent and solute, respectively. The contribution per mole of the solute to the free energy of activation of viscous flow, $\Delta \mu_2^{0*}$ of the solutions was determined from the above relation. The free energy of activation of viscous flow for the solvent mixture, $\Delta \mu_1^{0*}$, is given by the relation.^{33, 34}

$$\Delta \mu_{1}^{0\neq} = \Delta G_{1}^{0\neq} = RT \ln(\eta_{0} \varphi_{1}^{0} / hN_{A})$$
(13)

where N_A is the Avogadro's number and the other symbols have their usual significance. The values of the parameters $\Delta \mu_1^{0\neq}$ and $\Delta \mu_2^{0\neq}$ are reported in Table 9 which shows that $\Delta \mu_1^{0\neq}$ is almost constant at all temperatures and solvent compositions.

It means that $\Delta \mu_2^{0\neq}$ is dependent mainly on the values of viscosity *B*-coefficients and $(\varphi_{V,2}^0 - \varphi_{V,1}^0)$ terms. But $\Delta \mu_2^{0\neq}$ values were found to be positive at all the experimental temperatures and this suggests that the process of viscous flow becomes difficult as the temperature and molarity of Ag₂SO₄ in solutions increases. Hence the formation of the transition state becomes less favourable.³³ According to Feakins et al,³³ $\Delta \mu_2^{0\neq} > \Delta \mu_1^{0\neq}$ for solutes having positive viscosity *B*-coefficients indicates stronger solute-solvent interactions, suggesting the formation of a transition state which is accompanied by the rupture and distortion of the intermolecular forces in the solvent struc-

Tabele 9: Values of $\varphi_{V,2}^0 - \varphi_{V,1}^0$, $\Delta \mu_1^{0\neq}$, $\Delta \mu_2^{0\neq}$, $T\Delta S_2^{0\neq}$ and $\Delta H_2^{0\neq}$ for glycine in different aqueous.

Parameters	298.15 K	308.15 K	318.15 K
	Pure	aqueous solu	ıtion ^a
$(\varphi_{V,2}^0 - \varphi_{V,1}^0) \times 10^6 (\text{m}^3 \text{mol}^{-1})$	25.03	25.58	25.79
$\Delta \mu_1^{0\neq}$ (kJ mol ⁻¹)	9.175	8.944	8.761
$\Delta \mu_2^{0\neq}$ (kJ mol ⁻¹)	30.891	32.524	34.205
$T\Delta S_2^{0\neq}$ (kJ mol ⁻¹)	-49.403	-51.06	-52.717
$\Delta H_2^{0\neq}$ (kJ mol ⁻¹)	-18.512	-18.536	-18.512
0.005 mol dm ⁻³ of	f Ag ₂ SO ₄ in	aqueous solut	tion
$\overline{(\varphi_{V,2}^0 - \varphi_{V,1}^0) \times 10^6 \text{ (m}^3 \text{ mol}^{-1})}$	20.21	16.35	2.86
$\Delta \mu_1^{0\neq}$ (kJ mol ⁻¹)	8.749	8.536	8.304
$\Delta \mu_2^{0\neq}$ (kJ mol ⁻¹)	51.026	45.747	24.396
$T\Delta S_2^{0\neq}$ (kJ mol ⁻¹)	396.987	410.302	423.617
$\Delta H_2^{0\neq}$ (kJ mol ⁻¹)	448.013	456.049	448.013
0.010 mol dm ⁻³ of	f Ag ₂ SO ₄ in	aqueous solut	tion
$\overline{(\varphi_{V,2}^0 - \varphi_{V,1}^0) \times 10^6 \text{ (m}^3 \text{ mol}^{-1})}$	22.05	19.23	16.33
$\Delta \mu_1^{0\neq}$ (kJ mol ⁻¹)	8.952	8.957	8.624
$\Delta \mu_2^{0\neq}$ (kJ mol ⁻¹)	79.675	69.943	43.235
$T\Delta S_2^{0\neq}$ (kJ mol ⁻¹)	543.229	561.449	579.669
$\Delta H_2^{0\neq}$ (kJ mol ⁻¹)	622.904	631.392	622.904
0.015 mol dm ⁻³ of	f Ag ₂ SO ₄ in	aqueous solut	tion
$\overline{(\varphi_{V,2}^0 - \varphi_{V,1}^0) \times 10^6 \text{ (m}^3 \text{ mol}^{-1})}$	26.85	23.22	18.69
$\Delta \mu_1^{0\neq}$ (kJ mol ⁻¹)	9.025	8.916	8.668
$\Delta \mu_2^{0\neq}$ (kJ mol ⁻¹)	142.36	119.87	114.471
$T\Delta S_2^{0\neq}$ (kJ mol ⁻¹)	415.77	429.715	443.66
$\Delta H_2^{0\neq}$ (kJ mol ⁻¹)	558.13	549.585	558.13
0.020 mol dm ⁻³ of	f Ag ₂ SO ₄ in	aqueous solut	tion
$\overline{(\varphi_{V2}^0 - \varphi_{V1}^0) \times 10^6 \text{ (m}^3 \text{ mol}^{-1})}$	31.77	29.86	24.43
$\Delta \mu_1^{0\neq}$ (kJ mol ⁻¹)	8.958	8.834	8.803
$\Delta \mu_2^{0\neq}$ (kJ mol ⁻¹)	132.917	128.023	124.061
$T\Delta S_2^{0\neq}$ (kJ mol ⁻¹)	132.021	136.449	140.877
$\Delta H_2^{0\neq}$ (kJ mol ⁻¹)	264.938	264.472	264.938

^a values calculated using B-values from Ref³².

ture. ³³ The larger is the value of $\Delta \mu_2^{0\neq}$, the greater is the structure- making tendency of the solute, and the positive values of $\Delta \mu_2^{0\neq}$ for glycine in the different aqueous Ag₂SO₄ solutions suggests glycine to be a net structure promoter in these ternary mixtures.

The entropy of activation for electrolytic solutions has been calculated relation:³³

$$\Delta S_2^{0\neq} = -\mathrm{d}(\Delta \mu_2^{0\neq})/\mathrm{d}T \tag{14}$$

where $\Delta S_2^{0\neq}$ has been obtained from the negative slope of the plots of $\Delta \mu_2^{0\neq}$ against *T* by using a least squares treatment. The activation enthalpy ($\Delta H_2^{0\neq}$) has been calculated using the relation: ³³

$$\Delta H_2^{0\neq} = \Delta \mu_2^{0\neq} + T \Delta S_2^{0\neq} \tag{15}$$

The value of $\Delta S_2^{0\neq}$ and $\Delta H_2^{0\neq}$ are listed in Table 9 and they were found to be positive for all the experimental solutions at all the temperatures suggesting that the transition state is associated with bond breaking and decrease in order. Although a detailed mechanism for this cannot be easily advanced, it may be suggested that the slip-plane is in the disordered state. ^{33, 34}

4. Conclusion

In summary, φ_V^0 and viscosity *B*-coefficient values for glycine indicate the presence of strong solute-solvent interactions, which further strengthened at higher molarities of Ag₂SO₄ in the ternary solutions but decrease at higher temperatures. Also the trend in $(\delta \varphi_E^0 / \delta T)_P$, N_W and $\Delta \mu_2^{0\neq}$ values for glycine in the different aqueous Ag₂SO₄ solutions suggest glycine to be a net structure promoter in these ternary mixtures.

5. References

- 1. G. R. Hedwig, and H. Hoiland, J. Chem. Thermody. 1993, 25, 349–354.
- G. R. Hedwig, J. Chem. Soc. Faraday Trans. 1993, 2761– 2768.
- R. Bhat, and J. C. Ahlluwalia, J. Phys. Chem. 1985, 89, 1099–1105.
- 4. T. V. Chalikan, A. P. Sarvazyan, and K. J. Breslauer, *J. Phys. Chem.* **1993**, *97*, 13017–13026.
- 5. P. H. Von Hippel, and T. Schleich, *Acc. Chem. Res.* **1969**, *2*, 257–265.
- W. P. Jencks, *Catalysis in Chemistry and Enzymology*, McGraw Hill, New York 1969, p. 351.

- K. Beliali, and E. Agranci, J. Solution. Chem. 1990, 19, 867– 882.
- Z. Yan, J. Wan, H Hang, and D. Liu, J. Solution. Chem. 1998, 27, 473–483.
- 9. R. K. Wadi, and R. K. Goyal, J. Solution. Chem. **1992**, 21, 163–170.
- X. Wang, L. Xu, R. S. Lin, and D. Z. Sun, Acta. Chem. Sin, 2004, 62, 1405–1408.
- 11. T. Banerjee, and N. Kishor, J. Solution. Chem. 2005, 35, 137–153.
- B. Sinha, V. K. Dakua, and M. N. Roy, J. Chem. Eng. Data 2007, 52, 1768–1772.
- 13. T. E. Creighton, Curr. Opin. Struct. Biol. 1991, 1, 5-16.
- 14. T. Arakwa, and S. N. Timasheff, *Biochemistry*. **1984**, *23*, 5912–5923.
- 15. Jr. Raymond F. Greene, and C. Nick Pace, *J. Biol. Chem.* **1974**, *249*, 5388–5393.
- G. Velicelebi, and J. M. Sturtevant, *Biochemistry*. 1979, 18, 1180–1186.
- 17. M. N. Roy, and D. K. Hazra, J. Chem. Technol. 1994, 1, 93–97.
- M. N. Roy, B. Sinha, and V. K. Dakua, J. Chem. Eng. Data 2006, 51, 590–594.
- 19. M. N. Roy, and B. Sinha, J. Mol. Liq. 2007, 133, 89-99.
- 20. D. O. Masson, Philos. Mag. 1929, 8, 218-223.
- 21. F. J. Millero, A. L. Surdo, and C. Shin, *J. Phys. Chem.* **1978**, 82, 784–792.
- 22. T. S. Banipal, and P. Kapoor, J. Indian. Chem. Soc. 1999, 7, 431–437.
- 23. J. E. Desnoyers, Pure. Appl. Chem. 1982, 54, 1469-1478.
- 24. T. E. Leslie, and T. H. Lilley, Bioplymers, 1985, 24, 695-710.
- 25. B. Sinha, B. K. Sarkar, and M. N. Roy, *J. Chem. Thermody.* **2008**, *40*, 394–400.
- 26. G. Hepler, Can. J. Chem. 1969, 47, 4617-4622.
- E. Berlin, M. J. Pallansch, J. Phys. Chem. 1968, 72, 1887– 1889.
- 28. F. T. Gucker, W. L. Ford, and C. E. Moser, J. Phys. Chem. 1939, 43, 153–168.
- 29. R. W. Gurney, *Ionic Processes in Solution*, McGraw-Hill, New York **1953**.
- 30. A. K. Mishra, and J. C. Ahluwalia, J. Chem. Soc. Faraday Trans. 1 1981, 77, 1469–1483.
- 31. G. Jones, and M. Dole, J. Am. Chem. Soc. 1929, 51, 2950–2964.
- 32. T. S. Banipal, A. Bhatia, P. K. Banipal, G. Singh, and D. Kaur, J. Indian. Chem. Soc. 2004, 81, 126–131.
- 33. D. Feakins, D. J. Freemantle, K. G. Lawrence, J. Chem. Soc., Faraday Trans. 1 1974, 70, 795–806.
- S. Glasstone, K. Laidler, and H. Eyring, *The Theory of Rate processes*, McGraw-Hill, New York **1941**.

Povzetek

Pri 298.15, 308.15 in 318.15) K smo izmerili gostote in viskoznosti raztopin glicina v 0.005, 0.010, 0.015 in 0.020 molarnih vodnih raztopinah srebrovega sulfata (Ag₂SO₄) v širokem koncentracijskem območju. Iz eksperimentalnih podatkov smo izračunali navidezne molske volumne (φ_V) in koeficiente viskoznosti *B* za glicin v preiskovanih raztopinah. Koncentracijsko odvisnost φ_V smo opisali z Massonovo enačbo ter določili navidezne molske volumne pri neskončnem razredčenju φ_V ter naklon S_V^* . Iz vrednosti dobljenih parametrov smo sklepali na interakcije topilo-topljenec ter topljenec-topljenec v raztopinah. Podatke za viskoznost smo analizirali z uporabo Jones-Dolejeve enačbe; dobljena parametra *A* in *B* pa nam spet dajeta informacije o interakcijah v raztopinah. Določili smo tudi standardne volumne prenosa ($\Delta \varphi_V$) ter B-koeficiente prenosa (ΔB) za prenos glicina iz vode v vodno raztopino Ag₂SO₄ ter tudi z njihovo pomočjo proučevali različne interakcije v ternarnih raztopinah. Predznak izraza ($\delta^2 \varphi_V^0 / \delta T^2$)_{*p*}je merilo za »structure making« oz. »structure braking« efekt glicina. Izračunali smo tudi aktivacijske parametre viskoznostnega toka za ternarne raztopine ter jih razložili z teorijo prehodnih stanj