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Abstract
We outline the construction of an algebraic (numerical) representation for Clar’s valence formulas which in their geo-

metrical form are illustrated with π-aromatic sextets as inscribed circles in benzenoid rings.
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1. Introduction
With the widespread popularity of MO calculations

during the last half of the previous century, and particu-
larly with the development and expansion of ab initio
computations using Gaussian orbitals, introduced in com-
putational chemistry by Samuel Francis Boys in the early
1950s,1 the use of an alternative to MO methods, namely
the VB method would almost have disappeared from
quantum chemistry, were it not for a few theoretical che-
mists who kept it alive.2, 3 With the limited interest of
quantum chemists in the theoretical chemistry research
outside applied Gaussian MO computations, Kekulé va-
lence formulas would equally fell in oblivion, as far as nu-
merical calculations are considered in theoretical chemi-
stry, were it not for the growing interest in Kekulé valence
structures that evolved with the emergence of Chemical
Graph theory in mid 1970s4, 5 Applications of graph theo-
ry to chemistry were not the only segment of theoretical
chemistry that was largely avoided by quantum chemists.
Density Functional Theory (DFT) was equally not well
received by most quantum chemists (among the excep-
tions were Robert G. Parr and John A. Pople). There is no
doubt that the sudden adoption of Density Functional
Theory into quantum chemistry was due to the Nobel Pri-
ze in Chemistry in 1998, which was divided equally bet-
ween Walter Kohn6 »for his development of the density-
functional theory« and John A. Pople »for his develop-

ment of computational methods in quantum chemistry.«
What it will take for quantum chemists to suddenly

adopt Chemical Graph Theory as a useful branch of theo-
retical chemistry is difficult to speculate, but Chemical
Graph Theory is gradually winning recognition in some
chemistry circles as it continues to offer insights on aro-
maticity – which remains one of the central topics of che-
mistry; Chemical Graph Theory cannot fade away, and
can only gain in importance. 

In this respect one may say that just as aromaticity is
central to chemistry so are Kekulé valence structures cen-
tral to aromaticity! Already in 1975 the stunning disco-
very of conjugated circuits,7, 8 »buried« within individual
Kekulé valence structures, has shown that Kekulé valence
structures contain more information than their geometri-
cal formulas may suggest. Since then a number of novel
insights about Kekulé valence structures followed: the ob-
servation that a single Kekulé valence structure contains
information on all the remaining Kekulé valence structu-
res;9 the notion of innate degree of freedom10–12 also refer-
red to as the forcing number of Kekulé valence structu-
res,13 the concept of resonance graphs,14–16 which associa-
tes with the set of Kekulé valence structures of a molecule
a graph (and its adjacency matrix); the partition of π-elec-
trons to individual rings of polycyclic conjugated hydro-
carbons;17 the representation of the set of Kekulé valence
structures of a molecule by graphical or alphanumeric
matrix,18 which is a special case of graphical matrices in-
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troduced for potential use in structure-property-activity
studies about 15 years ago.19 The latest and potentially the
most important use of Kekulé valence structures and co-
njugated circuits is development of a graph theoretical ap-
proach to the calculation of ring currents in polycyclic co-
njugated hydrocarbons.20–24 These advances have already
given novel insights on aromaticity, one of the central
concepts in organic chemistry. To this impressive list of
accomplishments of chemical graph theory related to Ke-
kulé valence structures, we would like to add another no-
velty: the Algebraic Clar formulas – to be outlined in this
contribution.

1. 1. Clar Structural Formulas

An excellent introduction to Clar structrual formulas
and their potential in chemistry of benzenoid hydrocar-
bons can be found in Clar’s booklet: The Aromatic Sextet25

and its elaboration in a review on aromaticity by one of
present authors.26 In Fig. 1 we have illustrated two dozen
Clar structures for smaller benzenoid hydrocarbons,
which include all benzenoids having four and fewer fused
benzene rings and a selection of smaller benzenoid hydro-
carbons having from five to eight benzene rings. 

Fig. 1: Clar structures for two dozen smaller benzenoid hydrocarbons
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The first important thing to notice is that aromatic π-
sextets in Clar structures are never placed in adjacent ben-
zene rings, just as two cumulated C=C bonds never occur
in benzenoid hydrocarbons. The reason for not placing π-
aromatic sextets in adjacent rings is that sextets contribute
six electrons to the count of π-electrons, and if, for exam-
ple, one places sextets in adjacent rings, as in both rings of
naphthalene, this would give an incorrect count of π-elec-
trons for naphthalene because the sextets in adjacent rings
would contribute 12 π-electrons instead of 10, which is
the count of π-electrons in naphthalene. For more on how
to draw and how not to draw structrual formulas for ben-
zenoids one should consult ref.27, 28

In Fig. 1 for each benzenoid only one Clar structure
is shown, but it is not difficult to see that for a number of
benzenoids of Fig. 1 one can write two or more Clar struc-
tures. Besides benzene, from the dozen benzenoids in Fig.
1, only an additional three benzenoids (10, 18, 22) have
Clar formula in which rings have only aromatic π-sextets
or are »empty«, in the terminology of Eric Clar. »Empty«
rings are defined as rings which have no C=C bonds. Ben-
zenoids which have only aromatic π-sextets and »empty«
rings have 6n π-electrons and show unusual stability.
They have been referred to by Clar as fully aromatic ben-
zenoid hydrocarbons. 

There is an additional group of benzenoids having
only one Clar structure. They, besides sextet rings and
empty rings, have one or more benzenoid rings with a sin-
gle C=C bond. These are benzenoids 4 (phenanthrene), 9
(pyrene), 10 (triphenylene), 12 (dibenz[a,h]anthracene),
17, 18 19, 21, 22, and 23 of Fig. 1. All other benzenoids of
Fig. 1 have one or more benzenoid rings with two C=C
bonds, and consequently have more than one Clar structu-

re. In such molecules π-aromatic sextets can be placed in
different rings, as illustrated in Fig. 2 on benzo[b]chryse-
ne (structure 11 of Fig. 1). Observe that some of Clar
structures of such systems may have benzenoid rings with
a single C=C bond (like rings C and D in Fig. 2). Howe-
ver, Clar structures with migrating sextets necessarily ha-
ve benzenoid rings with pair of C=C bonds. Thus we can
characterize molecules having only one Clar structure as
systems that besides sextet rings and empty rings, have
one or more benzenoid rings with a single C=C bond, and
have no benzenoid rings with pair of C=C bonds. 

1. 2. Algebraic Clar Formulas

In the year 2003 one of present authors has introdu-
ced the »Algebraic Kekulé valence formulas« for benze-
noid hydrocarbons, i. e. the valence formulas in which nu-
merical values have been assigned to individual benzene
rings based on the partition of π-electrons to each indivi-
dual ring. Depending on the number of C=C bonds within
a ring and the number of C=C bonds shared between adja-
cent rings in the set of Kekulé valence structures of a mo-
lecule, one assigns π-electrons to individual rings.17, 29–42

Numerical benzenoid ring values are ring-analogous to
Pauling bond orders, which count the participation of CC
double bonds to individual CC bonds in a molecule in a
set of Kekulé valence structures.

Is it possible to construct a numerical representation
for Clar valence structures analogous to numerical repre-
sentations of Kekulé valence structures? The answer is:
Yes – and in this section we will outline one such con-
struction. The goal is to arrive at algebraic (or numerical)
valence formulas that would characterize the presence or

Fig. 2: The five Clar structures for 11, naphtho[a]anthracene, while the first structure is representation of 11 by a single structural formula invol-

ving »migrating« sextets. Benzenoid rings are labelled A-E from left to right

A B

D E

C
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the absence of π-aromatic sextets in different rings of ben-
zenoid hydrocarbons, with a possibility of extending the
approach also to non-benzenoid hydrocarbons, when ap-
propriate. In the case of benzenoids having a single Clar
structure, the numerical Clar formulas are very simple,
based on the use of digits one for rings having π-aromatic
sextet and zero otherwise, as illustrated in Fig. 3 for ben-
zenoids of Fig. 1 having a single Clar structure. Observe
that here there is no differentiation between fully aromatic
benzenoids (the benzene rings of which are either sextet
rings or empty rings) and benzenoids which have in addi-
tion to sextet rings also rings with fixed single C=C bond
(structures 4, 9, 12, 17, 19, 21 and 23 of Fig. 1). If in the-
se structures one replaces a peripheral single C=C bond
by a benzenoid ring, one obtains larger fully aromatic
benzenoids. Thus from pyrene (9) one obtains dibenzop-
yrene (18) and from dibenz[a,h]anthracene (12) one ob-
tains tetrabenzo[a,c,h,j]anthracene (22).

Of more interest are benzenoids having migrating
aromatic sextets, like naphto[a]anthracene of Fig. 2 with
five Clar structures. Clar has depicted such benzenoids by
a single structure adding one or more arrows passing
through rings in which one can place aromatic sextets in
alternative Clar structures of such molecules. The present
challenge is that of constructing a single numerical struc-
ture corresponding to the single geometrical structure of
Clar that uses π-sextets and arrows. The way how we pro-
pose to arrive at algebraic (in contrast to geometric) Clar
structures is to count how many times each ring in a
polycyclic benzenoid hydrocarbon has a π-aromatic circle
inscribed in the set of all possible Clar structures for the
molecule under consideration. By looking at Fig. 2 one
can see (by viewing Kekulé structures from left to right)
that the first and the second benzenoid rings and the fourth
ring of naphto[a]anthracene involve aromatic sextets twi-
ce, while the third ring has an aromatic sextet only in one
of the five Clar structures. Finally the last ring of naph-
to[a]antrhacene has aromatic sextets in three of the five

Clar structures. On the basis of this we can assign numeri-
cal values 2/5 to rings A, B, D, the numerical value of 1/5
to ring C, and the value 3/5 to ring E, as is illustrated at the
end of the second row Fig. 4. Similar results for remaining
bezenoids of Fig. 1 having more than a single Clar struc-
ture are shown in the rest of Fig. 4.

Before discussing the numerical Clar formulas of
Fig. 4 we will report on numerical Clar formulas for addi-
tional 15 benzenoids having two or more Clar structures,
illustrated in Fig. 5. Structures of Fig. 5 include all cata-
condensed benzenoids having six benzenoid rings (except
structures 17 and 19 of Fig. 4, already considered). A clo-
se look at the numerical Clar structures of Fig. 4 and Fig.
5 clearly shows that when a ring with zero numerical va-
lue (the ring which in none of Kekulé valence structures
has been assigned π-aromatic sextet) is erased, the resul-
ting smaller fragments have the same numerical values for
their rings as are the values in the corresponding rings of
smaller benzenoids. Thus when the central »zero« rings in
pentaphene and perylene of Fig. 4 (structures 13 in and 16
in Fig. 1) are erased, these structures reduce to naphthalene
fragments which have the same ring values as naphthalene.

In Fig. 4 and Fig. 5 several regularities in numerical
ring values can be observed. The magnitude of ring values
for linear acenes: naphthalene, anthracene, and tetracene,
namely 1/2, 1/3, and 1/4, respectively gradualy decrease,
having value 1/R, where R is the number of linearly fused
benzenoids. In linear fragments of angularly fused one
finds constant ring values for all rings of linear fragments,
except for adjacent »kink« rings, which have smaller va-
lues. This is because even though adjacent kink rings can
have aromatic π-sextets they can not have aromatic sextets
simultaneously. Finally observe the simple sum rule for

Fig. 3: Numerical representation of unique Clar structures

Fig. 4: Algebraic (numerical) Clar formulas for benzeoid hydrocar-

bons of Fig. 1 having more than one Clar structure
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ring values: the ring values in linear fragments always add
to 1, because each linear fragment results from the parti-
tion of a single aromatic sextet to linearly adjacent rings.

1. 2. 1. Tribenzo[[a,h,rst]]phenanthre
[[1,2,10-cde]]pentaphene

We will end this outline of algebraic Clar formulas
by considering tribenzo-[a,h,rst]phenanthro[1,2,10-
cde]pentaphene (TPP), illustrated in Fig. 6, which has 11
fused benzenoid rings. The molecule has a center of
symmetry, so we need to consider only symmetry non-
equivalent carbon atoms and their rings, which are in the
top right half of the molecule, all atoms of which have
been numbered 1–21 in Fig. 6. The molecule has eight
Clar structures with five π-aromatic sextets, which are il-
lustrated in Fig. 7. A close look at the eight Clar structures
shows that only two π-aromatic sextets have fixed posi-
tions, while the remaining three sextets are migrating sex-
tets. If we delete the two »fixed« sextets (one at the top
and one at the bottom of the molecule) and the adjacent
bonds, one obtains a catacondensed 7-ring benzenoid with
migrating sextets which will have the same ring values as
those of the algebraic Clar structure of TPP. Observe that
all five symmetry non-equivalent rings that are sites of 
π-aromatic sextets have in this molecule different numeri-
cal ring values: 1, 5/8, 4/8, 3/8 and 2/8. So while all ben-
zenoid rings having »fixed« aromatic sextets always have
equal numerical characterizations, this is not the case with
the benzenoid rings involving migrating sextets.

The question is: Are there any computational results
or experimenal results that would correlate with the above
variable π-aromatic ring sextet contents: 1, 5/8, 4/8, 3/8,
2/8 and 0 for the individual benzene rings in TPP? As we
will illustrate below, there are in fact both computational
and experimental data that fully agree with the trend of
the relative Clar character for different benzenoid rings in
tribenzo[a,h,rst]phenanthro-[1,2,10-cde]pentaphene
shown above. For TPP it is no difficult to find, for exam-
ple by using the approach of John and Sachs,43, 44 that the
number of Kekulé valence structures of TPP molecule is
140. It is also not difficult to calculate the local aromatic
character of different benzenoid rings,45, 46 which are gi-
ven by the quotient K’/K, where K’ is the number of times
a ring appears in all 140 Kekulé valence structures having
three C=C bonds divided by K (the total number of num-

Fig. 5: Algebraic Clar structures for additional benzenoids having

up to seven fused benzene rings

Fig. 6: The numbering of symmetry non-equivalent carbon atoms

of tribenzo[a,h,rst]-phenanthre[1,2,10-cde]pentaphene

Fig. 7: Clar structures and Algebraic Clar structure for triben-

zo[a,h,rst]-phenanthre[1,2,10-cde]pentaphene
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ber Kekulé valence structures). The local aromatic charac-
ter for all six non-equaivlaent benzenoid rings of TPP are
130/140; 96/140; 72/140; 68/140; 56/140; and 20/140; or:
0.9286; 0.6857; 0.4865; 0.4857; 0.4000 and 0.1429, for
benzenoid rings having π-aromatic sextet contents: 1, 5/8,
4/8, 3/8, 2/8 and 0, respectively. 

This paralellism between the algebraic Clar num-
bers and the local aromaticity characters, which are based
on using ring contributions from all Kekulé valence struc-
tures, which gives even to the empty rings of TPP a local
aromaticity of 20/140, is a strong support for Clar’s notion
of aromatic π-sextets.

Additional support for this meaningful interpreta-
tion of the numerical values of Clar’s sextet occurences in
different benzenoid rings of TPP comes from a compari-
son of experimental bond lengths in different benzenoid
rings of TPP with the π-sextet character as calculated in
algebraic Clar structures. The molecular and crystal struc-
ture of tribenzo[a,h,rst]phenanthro[1,2,10-cde]pentaphe-
ne was determined by X-ray diffraction and reported by I.
Oonishi, S. Ohshima, S. Fujisawa, J. Aoki, Y. Ohashi and
T. M. Krygowski.47 They found the molecule to be distor-
ted from planar structure due to steric repulsions between
the overcrowded hydrogen atoms, which results in a non-
planar saddle form for the molecule. In Table 1 we show
the CC bond lengths from ref.,47 based on avaraging the
values for pairs of symmetry related CC bonds reported
CC bonds of Oonishi et al.
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Let us look at Table 1 more closely. It is not difficult
to observe that there are essentially four types of CC
bonds in Table 1: »long«, »intermediate«, »aromatic« and
»short«, but we have to stress that all four labels we show
under quotation marks emphasize the relative nature of
the labels used to differentiate between CC bonds which
are all shorter than typical C-C bond in alkanes (saturated
hydrocarbons) and longer than typical C=C bonds in alke-
nes (unsaturated hydrocarbons having C-C single and
C=C double bonds). Here we refer to CC bonds of about
1.46 Å as »long«, to CC bonds of around 1.43 Å as »inter-
mediate«, to CC bonds of around 1.40 Å as »aromatic«,
and to CC bonds of around 1.37 Å as »short«. In Fig. 8 we
have illustrated on the molecular diagram of TPP the loca-

tions of the »aromatic« CC bonds in benzene rings by ins-
cribing π-aromatic sextets circle, the CC bonds classified
as »double« are shown as bold, and CC bonds classified as
»single« bonds are indicated by letter l. 

Observe the interesting results of such a view on CC
bond lengths of tribenzo[a,h,rst]phenanthro[1,2,10-
cde]pentaphene, if one focuses attention to the set of »aro-
matic« CC bonds alone: the resulting valence structure is
the second of the eight Clar structures of triben-
zo[a,h,rst]phenanthro[1,2,10-cde]pentaphene! Moreover,
we can account even for the minor variations of CC bonds
within π-aromatic sextet rings. Let us label the three
symmetry non-equivalent rings having additional C=C
character (shown as bold CC bonds in Fig. 8), going from

Table 1 Experimental bond lengths of tribenzo[a,h,rst]phenanthro[1,2,10-cde]pentaphene as reported by Oonishi et

al [7] (the numbering of carbon atoms is given in Fig. 7

Bond Length Bond Length Bond Length Bond Length
1–2 1.467 5–6 1.372 10–15 1.414 16–21 1.405

1–19’ 1.415 6–7 1.408 11–12 1.366 17–18 1.351

1–20 1.407 7–8 1.465 12–13 1.387 18–19 1.426

2–3 1.409 8–9 1.368 13–14 1.370 19–20 1.432

2–7 1.405 8–21 1.435 14–15 1.409 20–21 1.442

3–4 1.378 9–10 1.414 15–16 1.436

4–5 1.393 10–11 1.412 16–17 1.424

Fig. 8: CC bonds of TPP with excessive C=C bond character (bold)

and excessive C-C bond character (marked by l) and the Clar struc-

tures consistent with changes in CC bond lengths
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left to right, as A, B, and C. We can relate the differences
in CC bonds in these rings to bond orders of the same CC
bonds in the eight Clar structures of Fig. 8.

Let us start with ring A. First let us defined a partial
Pauling bond order as the Pauling bond order calculated
for a subset of Kekulé valence structures. The subset of
Kekulé valence structures considered here are Kekulé va-
lence structures that contribute to the Clar sextet in indivi-
dual rings of TPP. From Fig. 7 it follows that ring A ap-
pears five times as sextet ring (having three C=C bonds)
and three times as ring having only two C=C bonds. Each
of five structures needs two Kekulé valence structures,
which means that in 10 valence structures C=C appears fi-
ve times and in addition the same CC bonds appear as
C=C in additional three structures of the eight Clar struc-
tures of Fig. 7. Thus the »bold« CC bonds of Ring A have
partial Pauling bond order of 8/13, while the other perip-
heral CC bonds of this ring have partial bond order of
5/13. The respective experimental bond lengths of Oonis-
hi and collaborators are 1.366 Å, 1.370 Å for »bold«
bonds (11, 12), (13, 14), and 1.387 Å for bond (12, 13), in
agreement with expectations that larger bond order indi-
cate shorter CC bonds.

In three Clar structures of eight of tribenzo[a,h,rst]
phenanthro[1,2,10-cde]pentaphene the ring B is π-sextet
ring (which involves six Kekulé structures) while in five
Kekulé structures the »bold« CC bond appears as C=C
bond. One obtains then the partial Pauling bond order of
8/11 and 5/11 for bonds (8, 9) and (9, 10), respectively,
and the experimental length of which are: 1.368 Å and
1.414 Å, respectively. Again one sees that a larger bond
order belongs to a shorter CC bond.

The situation is similarly reflected in ring C. The
»bold« CC bond appears in two sextets, meaning four Ke-
kulé valence structures and in additional six Clar structu-
res of Fig. 8, a total of 10 structures. This gives for the
»bold« CC bond a partial Pauling bond order of 8/10, and
a partial Pauling bond orders of 2/10 for the other bond.
The experimental CC bond length reported by X-ray are:
1.351 Å and 1.424 Å, 1.426 Å for bonds (17, 18), (16, 17)
and (18,19), respectively; again the larger partial Pauling
bond order belongs to a smaller CC bond length. We conc-
lude that the experimental data of Oonishi and collabora-
tors are consistent with expectations based on the eight
Clar structures of tribenzo-[a,h,rst]-phenanthre-[1,2,10-
cde]-pentaphene.

1. 3. Canonical Clar Structures

From the previous section we have seen (1) that al-
gebraic Clar structures agree with expectations based on
graph theoretically calculated local aromaticity in benze-
noid TPP, and (2) that the particular graphical Clar formu-
la of Fig. 7 agrees with the experimental data for CC bond
lengths in TPP. These results lead to a question: Is there,
among a set of symmetry unrelated Clar formulas of a

benzenoid hydrocarobn, a single representative Clar for-
mula that better agrees with experimental and theoretical
results, and that can be selected as canonical? The situa-
tion is somewhat analogous to a similar question that can
be posed for the set of Kekulé valences structures: Is the-
re, among a set of symmetry unrelated Kekulé valence
structures of a benzenoid hydrocarbon, a single represen-
tative Kekulé structure that better agrees with experimen-
tal and theoretical results, and that can be selected as ca-
nonical? When there is only one Kekulé valence structure
with the largest number of Kekulé benzenoid rings (rings
having three C=C bonds as is in Kekulé structure of ben-
zene) the answer to this question is known as the Fries Ru-
le.48, 46 This says that the most important Kekulé valence
structure for molecular stability is the structure which has
the maximum number of rings having three double bonds
in each ring. But the question is only partially answered,
because some benzenoid hydrocarbons have more than
one such so-called Fries structure. Hence the question is:
Can one select among several Fries structures one as more
representastive than others? We will leave this open que-
stion and return to the question of Canonical Clar structu-
re, which we define as follows:

Definition: A canonical Clar structure is the Clar
structure in which π-sextets are assigned to non-adjacent
benzenoid rings having the largest π-sextet ring values.

With this rule in the case of tribenzo[a,h,rst]phe-
nanthre[1,2,10-cde]-pentaphene one has inscribed hexa-

Fig. 9: Non-canonical Clar structures for selected benzenoid

hydrocrbons of Fig 4. and Fig. 5
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gons that have ring values 5/8 and 4/8, which is the case
with the second Clar structure of Fig. 7. However, many
benzenoid hydrocarbons have symmetry non-equivalent
rings having the same π-sextet ring values (e.g., linearly
fused acenes or similar fragments in branched catacon-
densed systems), which are not covered by the above rule;
however, the rule disqualifies Clar structures, such as tho-
se of Fig. 9, in which at least one of the sextet is not pla-
ced in optimal (maximal) benzene ring.

2. Concluding Remarks

Numerical characterization of Clar structures, as we
have seen, is so simple, that it appears surprising that it
has not been mentioned previouly in the literature. It is not
uncommon in science to »rediscover« something that has
been discovered earlier but may have not been widey
known, particularly if published in less known journal.
For example, this has been the case with resonance
graphs,15, 16 reported by one of present authors and publis-
hed in 1996. After the paper on resonance graphs has been
published Professor I. Gutman, editor of MATCH – Com-
munication in Mathematical and Computer Chemistry,
brought to our attention the paper of W. Günther14 in
which resonance graphs for smaller benzneoid com-
pounds were outlined and discussed some 15 years be-
fore. Günther published his work in 1982 in local journal
of the University of Halle, Halle, (at that time in Eastern
Germany). Were it not for I. Gutman and our re-discovery
of resonance graphs, which aroused considerable interest,
both in mathematical51–55 and mathematical chemistry li-
terature,56–58 the work of W. Günther would probably have
passed unnoticed. 

This time, therefore, we were more careful and
searched »old« literature to see if something similar to nu-
merical Clar structures has been already reported. A
search for published results is today easier than it used to
be, because of computers. Although even today one may
never be quite sure that searching was complete, not fin-
ding relevant literature these days is more reassuring than
it used to be. However, some caution is always in place.
Thus though a negative search may be indicative that the
work on construction of numerical formulas of Clar struc-
tures of benzenoids, reported in this article, appears here
for the first time, one should not be surprised if this is not
the case. Indeed, we found that in 2002 in a paper on
quantum-chemical justification for Clar’s valence structu-
re59 there was a brief mention of »frequency of π-sextet in
Clar formulas«, which is the same what is called here »al-
gebraic Clar structure«. The concept was illustrated on di-
benzo[a,f]tetraphene (the first structure in the last row of
Fig. 5) and benzo[a]naphtho[2,1]naphathacene (see Fig.
10). This was, however, not easy to detect, because the sa-
me concept has been named differently in the year 2002
and 2011! What has been surprising, however, is that the

author of the article in which the »frequency of π-sextet in
Clar formulas« were outlied was one of the present aut-
hors! Apparently, this author has forgotten that in this re-
latively lengthy review on relating Clar structures to quan-
tum chemical calculations, there was also a brief discus-
sion on graph theoretical properties of Clar structures.
One of the reasons, (or excuses), that one can completely
forget about such »detail« in an article on 35 pages, is that
with time people can shift their attention and interests to
other problems. In our case we drifted to the part of bioin-
formatics dealing with graphical and numerical rerepsen-
tation of biosequences, DNA, the secondary structure of
RNA, proteins, and even on numerical characterization of
proteomic maps and proteome.60 So for the past decade
we would return only from time to time to Kekulé valence
structures, our »first love«, apparently overlooking even
our own contributions in that area! In passing it is intere-
sting to mention that the algebraic (numerical) formulas
of Clar structures appeared in press about one year before
the algebraic (numerical) formulas for Kekulé valence
structures, but the latter attracted attention of several peo-
ple in mathematical chemistry – hence, could not be for-
gotten so easily!

The seminal paper on algebraic (numerical) formu-
las for Kekulé valence structures was followed by a series
of papers on this subject in which in particular A. T. Bala-
ban expanded the topic significantly. We may add that the
interpretation of ring values in algebraic Kekulé valence is
sometimes confused and viewed as a measure of local aro-
maticity or individual benzenoid rings. The true interpre-
tation of partitions of π-electron to individual rings relates
to π-electron ring density within polycyclic conjugated
hydrocarbon molecule. This is easy to see, because when
contributions in all rings are added, they give N, the num-
ber of carbon atoms and π-electrons. But some parallelism
with local aromaticity may be expected. It is probably less
likely that algebraic (numerical) formulas of Clar structu-
res will attract similar attention, because the most intere-
sting large systems, such as those giant benzenoids of
Klaus Müllen and collaborators,61 are fully benzenoid
hydrocarbons, and numerical representations of their Clar
structures is almost trivial, having no fractions but only
ones and zero values for aromatic sextets and empty rings.

Fig. 10: Algebraic Clar formula for benzo[a]naphtho[2,1]naphtha-

cene
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However, continuing interest of chemists is likely to shift
to local aromaticity,18 and therefore it cannot hurt to have
an additional and alternative characteirzation of local mo-
lecular features in polycyclic conjugated hydrocarbons.
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Povzetek
Predstavili smo konstrukcijo algebrai~nih (numeri~nih) representacij za Clarove valen~ne formule, ki so v svojih

geometrijskih oblikah predstavljeni z π-aromatskimi seksteti opisanih s krogi v benzenoidnih obro~ih.


