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Abstract
On the set of 53 trypsin inhibitors the affinity to the covalent bound ligands is modeled using linear (MLR) and non-li-

near (ANN) methods. Each compound is represented by 343 chemical descriptors. The hypothesis was that linear mo-

dels are not sufficiently flexible to yield the best model, because in MLR (multiple regression analysis) the number of

variables (descriptors) is limited by the number of objects in the training set. On the other hand the CP-ANN (counter-

propagation-artificial neural network) is not limited by this restriction and can thus involve larger number of variables

than there are compounds in the training set. Both methods are applied on the same division of 53 compounds on the

training, test, and validation sets. In a systematic GA (genetic algorithm) search the MLR models containing all possib-

le forms of linear polynomials, i.e., from 3 to 25 variables were scanned and no better model that one obtained by the

CP-ANN model was found. 

Keywords: Genetic algorithm (GA) optimization, multiple linear regression (MLR) modeling, counter-propagation ar-

tificial neural networks (CP-ANN) modeling, trypsin complexes, quantitative structure activity relationship (QSAR)

1. Historical Remark

Quite a long time ago (in fall of 1972) Professor Du-
`an Had`i suggested to one of us (JZ) to participate at the
Noordwijkerhout Advanced Study Institute on Computer
Representation and Manipulation of Chemical Data.
Even after almost forty years this conference is still regar-
ded as one of the milestones in the field of Computerized
Chemical Information Science. Professor Had`i’s idea
was to introduce this branch of chemistry to Slovenian
science community. At that time in his Laboratory there
was already a very strong group (lead by the late Professor
Andrej A`man) working with computers of that time on
Quantum Chemistry problems. Nevertheless, Professor
Had`i has envisaged that in the future the Quantum Che-
mistry will not be the only field in chemistry where the
computers will play a significant role, so via our group of
Chemometrics which originated from the 1973 in his La-
boratory, he promoted many long-term projects in diffe-
rent directions of computerized chemical information
science. Now, besides several groups working on a variety

of quantum chemical problems from ab intio calculations
to protein folding simulations, many other areas of com-
puter research in chemistry such as combined spectral in-
formation systems, pattern recognition and artificial intel-
ligence, chemometrics, QSAR, artificial neural networks,
and many other studies have been developed and well es-
tablished in Slovenian chemical community. With years
the motto supported by professor Had`i šdo not regard
computers as number crunching machines, but use them
as the experimental equipment’ has attracted scores of ex-
cellent and capable scientist which have produced many
excellent research results. All of us working in these areas
would like at the occasion of his 90th birthday to compli-
ment his vision of that time.

2. Introduction

The basic equation of the Hansch approach1 to the
Quantitative Structure-Activity Relationship2 (QSAR) is
the regression line that describes N activities {Ai}i = 1,… N
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of a set of N compounds { Xi } i = 1,… N each represented by
p variables or descriptors; Xi = (xi1, xi2, … xip) with a sys-
tem of N linear equations containing p variables xij: 

;     i = 1,…N (1)

The standard solution of the system of N linear
equations /1/ yields p + 1 coefficients bj, j = 0,1,…p. The
underlying assumption is that the applied molecular or
structural descriptors actually influence the activity A in
question. The magnitudes and signs of the coefficients bj,
j = 0,1,…p reflect the intensity and direction of the inf-
luence of each variable or descriptor on the activity A. In
general there are two goals within the QSAR research.
The first one tries to predict the activities of new com-
pounds using Multiple Linear Regression (MLR) model
/1/, i.e., the same set of variables xj, j = 1,…p and the same
set of coefficients bj, j = 0,1…p. The other goal is directed
toward the selection of the molecular descriptors or va-
riables that influence the known activities. In a complex
QSAR research most often both goals must be pursued.
Regarding the fact that nowadays thousands of structural
descriptors can be easily generated for each molecule the
second task, i.e., a selection of most appropriate descrip-
tors is carried out first. It is understandable that a MLR
system /1/ cannot have N very large (in order of hundreds
or even thousands) because this would requires at least N
+ 1 compounds with known activities to be available in or-
der to solve the system. Mostly the studies of QSAR are
carried out with hundred or somewhat less compounds
what heavily limits the number of molecular descriptors. 

The limitation of the number of variables for using
MLR is the reason that other methods for modeling were
tried, for example Artificial Neural Network (ANN) met-
hods,3 specifically, Counter-propagation ANN (CP-ANN).
Due to its so-called šhalf-unsupervised character’ the ad-
vantage of the CP-ANN method is that it is not restricted to
the discussed limitation of variables. However, the que-
stion remains whether the nonlinear methods are actually
better suited for this kind of studies compared to the stan-
dard linear ones. In other words, is there actually a need for
employing the ANN methods in the QSAR studies. There-
fore, our goal was to make an extensive study within the
complete space of all available MLR polynomials (linear
in the respect to the variables as required by the classical
QSAR equation /1/) for a given set of data for which an op-
timized nonlinear modeling already exists4 and check out
whether a better MLR can possibly be found or not. 

3. Methods

Genetic Algorithm (GA) is well known optimization
procedure for the selection of variables from larger set.

However, for our study in which we try systematically in-
vestigate all possible polynomial configurations (i.e., ta-
king into account all possible forms of linear polynomials
from p = 3 to p = 25) the standard GA5 procedure is not
best suited. Therefore, the so called permutation represen-
tation6 of chromosomes (or order-based representation)
instead of the bit-wise or sequentially ordered one has
been applied. Accordingly, the crossover and the mutation
functions have been adjusted to the used permutation re-
presentation of chromosomes. 

In the standard chromosome representation for the
selection of p out of the larger set of P descriptors for ma-
king the best model, each chromosome representing one
possible solution consists of a string of P zeros and ones
/2/, with p ones representing the presence of the molecular
descriptor associated with a given position in the string of
length P:

Chromosome = (0,0,0,1,0,0,1,0,0,0,1,0,0,0,
0,1,0,0, 0, … 0,0,0,1,0) (2)
P positions, p ones

On the other hand in the permutation representation
of chromosomes each chromosome is represented by a
permuted sequence of P numbers from 1 to P, with the
first p numbers yielding the possible selection of p mole-
cular descriptors used in the MLR modeling /3/:

Chromosome = (4,234,32,8,224,330,67,25,
132,P-2, …, P, … P-1,65) (3)
P numbers 1 to P

The crossover is performed in exactly the same way
as in the standard representation with an additional check
that assures removing of the duplicates of any gene num-
ber in the upper parts of both descendant chromosomes
which may arise through the interchange of lower halves
of parents. The mutation is made by switching the num-
bers at two randomly selected gene positions in the chro-
mosome. By taking into account always the same first p
numbers in the chromosome one can assure that in a given
GA optimization run there are always exactly the same
number of molecular descriptors in the MLR system /1/.
In this way one can focus a special study on the optimiza-
tion of a single type of polynomials (polynomials with a
pre-specified p) at the time. In the presented work 22 such
studies (for p = 3 to 25) were made for each single poly-
nomial type p. In this way we were sure that polynomials
with different number of coefficients p were covered
equally and adequately. 

The fitness function of each chromosome can be eit-
her the correlation coefficient between the activities pre-
dicted by the model on the test set compounds {ytest

i}
model

and the experimental activities {ytest
i}

experiment or the Root-
Squared-Error (RSE) between the same sets of activity
data yi be in the training, test, or validation set, respecti-
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vely, (4): 

formula
(4)

The evaluation of one pool of nc chromosomes thus
requires building up of nc MLR multiple linear regression
systems7 /1/ always with p variables: 

Ytraining=||Xtraining||BT (5)

Having the solutions for nc sets of coefficients B =
(b0,b1,… bp), on the training compounds in the form:

BT = ((||Xtraining||T × || Xtraining||)–1 × || Xtraining||T ) 
× Ytraining

(6)

the fitness value of the particular chromosome is calcula-
ted on the predictions Ytest

Ytest=||Xtest||BT (7)

comparing them with the experimental values Ytest,experiment.
In each pool all chromosomes are ordered according to
their fitness function and a new pool is generated using
the standard GA procedures. In our studies a minimum of
15,000 pools each having 50 chromosomes (750,000
MLR calculations) were inspected for each polynomial
type, i.e., for each p. Very often different GA parameters
as mutation rate, elitism (on/off), or different numbers of
pools were tried to find the optimal solution. This means
that on the average more than one million MLR calcula-
tions were made for each p. There is no specific excluding
procedure for descriptors. The descriptors are initially
chosen at random from the 343 possible ones – with no
bias or threshold on any of them. Further on, during the
GA procedure, the genes are šmoving’ from one genera-
tion to another strictly via the rules of crossing, mutations
and selection of the best based on the roulette wheel pa-
rent selection6.

For the non-linear modeling the Counter-propaga-
tion artificial neural network (CP-ANN) methods was
used. CP-ANN model is an upgrade of Kohonen map-
ping3. The stand alone Kohonen network only clusters the
input signals (sets of descriptors), ||Xtraining||, into 2-dimen-
sional plane of neurons. In the CP-ANN model an extra
layer of neurons (Grossberg layer) is added to the Koho-
nen layer, having exactly the same number and layout of
neurons as the Kohonen one. To the Grossberg layer the
responses (activities) Ytraining are input. Therefore, the self-
organization in the Kohonen layer produces the corres-
ponding rearrangement and šsmoothing’ of responses Ytrai-

ning over all cells of the Grossberg layer. By input of an
šunknown’ (test or validation signal (i.e., a set of descrip-
tors Xi

test or Xi
valid) into the Kohonen layer and by recor-

ding the position of the most excited neuron in this layer,

one can retrieve at the same position in the Grossberg la-
yer the corresponding activity, yANN-model.

In order to obtain the optimal CP-ANN model for
prediction of inhibition constants the following network
parameters were varied; the number of neurons in the
ANN from 5 × 5 to 9 × 9, the number of learning epochs
from 1 to 1000, maximal learning rate from 0.1 to 0.9 and
minimal learning rate from 0.01 to 0.1. The GA was cou-
pled with CP-ANN to reduce the number of descriptors
included in the models. A population of 100 chromoso-
mes evolving in 600 generations was considered in each
combination of different network and GA parameters. 

3. 1. The Data

In the present investigation4,8 we have used a master
dataset of 53 trypsin inhibitors with known binding affini-
ties to the ligands. The structure of each compound Xi =
(1, xi1, xi2, … xij, …xi343), j = 1,… 343 is described by 343
molecular descriptors xij and known activity or dependent
variable yi, i = 1,… 53. Activity yi of the compound Xi is
defined as its binding affinity to trypsin. The molecular
descriptors were obtained using CODESSA program9,10.
The initial number of more than thousand descriptors pro-
vided by the CODESSA program was reduced by emplo-
ying several simple checks for complete identity, for zero
descriptors, for descriptors having very low variance (less
than 0.001), and/or for not applicable descriptors to sets
compounds, etc. At the end of this checks 343 descriptors
remained. Hence, all GA optimization runs started by the
compounds described with 343 descriptors, or šgenes’,
each having unique ID in the range from 1 to 343. As
mentioned before, three data matrices: training, test, and
validation matrices: ||Xtraining||, ||Xtest||, and ||Xvalid|| with di-
mensions (26 × 344), (15 × 344) and (12 × 344), respecti-
vely, were constructed. The first column of each data ma-
trix ||X|| is equal to 1. To each data matrix ||X|| a corres-
ponding activity vector Ytraining, Ytest or Yvalid with 26, 15,
and 12 activity values, respectively, is associated. The di-
vision of the master on the three sub-set using the Koho-
nen neural network7 has been already described by one of
us ([@)8. The Kohonen neural network with the input of
all 53 compounds has provided a self-organized top map
of positions of neurons excited by each compound. From
53 points (positions of neurons excited by 53 compounds)
on the top map, first, the validation and then the test set
were extracted. The remaining compounds were used as
the training set. The criterion for the selection of the vali-
dation and test set was the requirement that the com-
pounds in each set cover the space of the top map as even-
ly as possible. Additionally, we try to balance the numbers
of compounds in each set in such a way that the ratio of
the training/(validation + test set) was 1:1 and then to keep
approximately the same ratio for the validation/test set.
The result is the division of 12, 15, and 26 compounds in
the validation, test, and training set, respectively.
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4. Results and Discussion

The cumulative results of the study are shown in Fi-
gure 1. The performance of the best models’ predictions
were found for all p (p = 3 to 25). As expected, the RSE
values for models obtained for the training sets is decrea-
sing towards zero as the number of polynomial coeffi-
cients p approaches the number of compounds in the trai-
ning set. With the actual data set containing relatively
small number of compounds (26) in all three sets we have
first to resolve the issue of the best fitness function ff.
When the preliminary GA optimizations were made it
turns out that neither RSE (eq. /4/) nor the correlation
coefficient r describes the fitness of the optimized solu-
tion (model) best. If testing only RSE the correlation coef-
ficients of the predicted values of the test set were low in-
deed, on the other hand, the models yielding higher corre-
lation coefficients have RSE values in the order of activi-
ties or even more. Then the compromise was made taking
into account the ratio between both values as a fitness
function ff:

(8)

and again, using equation /8/ as the fitness function, the
entire space of various MLR polynomials (p = 3 to 25)
was scanned in the search for the best GA parameters
(crossover rate, mutation rate, size of the pool, number of
iterations, survival rate). After the inspection of the results
we have decided to run the same three data sets (training,
test and validation) for all polynomials with the same set
of GA parameters (elitism included, 50 chromosomes in
the pool, for 5000 generations, mutation rate 0.05, crosso-
ver rate 0.98, and survival rate dependent of 5 best chro-
mosomes). Additionally, it turns out that for the entire
polynomial space (all sizes of polynomials) the combined
fitness function ff (eq. /8/) wasn’t as good as it was suppo-
sed to be. For polynomials having small number of coeffi-
cients (p ≤ 10) the fitness function /8/ was acceptable,
while for longer polynomials (p > 10) it starts favoring the
solutions with higher correlation coefficients over the
ones giving smaller RSE. In order to avoid this problem,
we have decided that RSE (eq. /4/) describes the fitness
results over the whole range of polynomials better than
any other formula we have tried. This, of course, is not to
say that no better fitness function could be found. Hence,
all GA optimizations were run again and using the RSE
value obtained on the test set as a fitness function.

Figure 1 shows the resulting best RSE values of the
described final GA runs (with final agreed parameters) for
all polynomials. As expected, the RSE values between the
model prediction and the experimental activities from the
training sets (26 compounds) decrease with the increasing
number of coefficients p. Clearly, the RSE value is very
close to zero for the optimized polynomial with 25 coeffi-

cients. On the first sight it may seem strange that the opti-
mized RSE values obtained with the training set are hig-
her than that for the test set. However, the entire optimiza-
tion procedure is not made in a single GA run, but it requi-
res to find the MLR model (using MLR procedure eq. /4/)
obtained on the training set that yields the best RSE on the
test set (eq. /5/) using the coefficients obtained in /4/. Op-
timized RSE values obtained with the training set only
could of course be lower if the optimization would not be
restricted by the condition that the GA procedure’s fitness
function ff is taken on the test set. From the lower curve in
Figure 1 (RSE values of the test set) it can be seen that the
best final RSEtest values using the test set (15 compounds)
for a given optimization, with p šgenes’ turned šon’ in the
chromosomes of 343 genes, has a broad minimum around
p = 10.

Figure 1. The best (optimized by the GA procedure) RSE values

(equation /4/) of the training and test set for different forms of MLR

polynomials (p = 4 to 25).

Therefore, in the region from p = 1 to p = 14 all op-
timized solutions (MLR models obtained on the training
set) have been tried. The best three sets of prediction re-
sults (predicted activities) on the validation set yi

valid, i =
1,… 12, obtained by coefficients B (eq. /6/) of the best
models are shown in Figure 2. The shown predictions cal-
culated by the three best models are the very best results
that we could obtain during our extensive GA optimiza-
tion. From the practical point of view the prediction re-
sults are far from being good and reliable. Considering
only the correlation and RSEvalid one would say that the
MLR model for p = 8 (r = 0.62 and RSEvalid = 1.68, midd-
le part of Figure 2) is the worst one. On the other hand,
considering the distribution of the predicted activities of
model p = 8 and its individual agreements with the experi-
mental values in comparison with the other two models (p
= 7, p = 9) has brought us to judge this model as the best
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one. This example shows how difficult it is to find a good
fitness function for such types of optimization. 

On the side of non-linear modeling the optimal CP-
ANN model4,8 yielding the RSEvalid = 0.71 was achieved

with the ANN dimension of 6 × 6 neurons, 200 learning
epochs, and with maximal and minimal learning rates of
0.5 and 0.1, respectively. Comparing the predictions by
the best CP-ANN procedure (Figure 3) with our data (Fi-
gure 2) one can see a clear difference. First, it is evident
that both, the correlation coefficient and RSE (r = 0.78,
RSEvalid = 0.71) values of the CP-ANN model are better
than the ones obtained by the MLR models. However, as a
defense to the MLR models it should be mentioned that
the predicted values in the CP-ANN model are clustered
into two groups each of which does not differentiate well
the šfine-structure’ of the activities while in the MLR mo-
dels this is not the case. What the CP-ANN method does
better than MLR is the separation of compounds into tho-
se with low and the ones with high activities what is the
most important and valuable feature. 

The present study was made primarily to find out the
limits of the MLR method in the view of a sparse number
of available data. What the problem of the selection of
descriptors is concerned, it is difficult to compare a met-
hod (MLR) in which the number of descriptors is limited
by the size of the training set with a non-linear method
(CP-ANN) which does not have this restriction. In Table 1
all 97 molecular descriptors selected by the best CP-ANN
model (Fig. 3) and 7 molecular descriptors selected by the
best MLR model (Fig.2, p = 8) are shown. There are four
descriptors of the best MLR model that are found among
the ones selected by the CP-ANN model what shows the
reliability of both methods.

5. Conclusion

The present study was made with the intention to ex-
plore the limits of the MLR methods for a given case and

Figure 2. Three best models according to the predictions obtained

on the validation set of 12 compounds never used in the training or

test procedure. The three best models were obtained with GA pro-

cedure with the training and test compounds on the polynomials

with seven, eight, and nine coefficients (p = 7, 8, and 9). They have

the r / RSEvalid values of 0.65 / 1.55; 0.62 / 1.68; and 0.67 / 1.52,

respectively.

Figure 3. The best CP-ANN model obtained on the same training,

test and validation sets of 53 compounds as reported in reference8.
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to show the justification of the use of ANN methods in
this and similar QSAR studies. Due to the enormous size
of the search space of possible distributions of 343 mole-
cular descriptors into different types of polynomials from

size p = 3 to p = 25, it is evident that no one can assure that
the solution found by the MLR is the best possible one.
However, regarding the slow improvement rates during
the GA procedures that we have followed in all types of

Table 1. Molecular descriptors selected by the CP-ANN model (97 – upper part) and by the MLR model (3 – lower part). The des-

criptors selected by both methods (4) are shown in bold in the upper part.

ID No. Name of descriptor9 ID No. Name of descriptor9

1 Number of atoms 142 HOMO-1 energy

2 Number of C atoms 143 HOMO energy

7 Number of bonds 146 HOMO – LUMO energy gap

14 Relative number of single bonds 149 Avg nucleoph. react. index for a N atom

17 Number of aromatic bonds 152 Avg nucleoph. react. index for a C atom

23 Relative number of aromatic bonds 153 Min electroph. react. index for a N atom

27 Wiener index 183 WPSA-1 (PPSA1*TMSA/1000) 

30 Randic index (order 2) 201 RNCG (QMNEG/QTMINUS) 

31 Randic index (order 3) 204 FHDSA Fractional HDSA (HDSA/TMSA) 

33 Kier&Hall index (order 1) 206 FHASA Fractional HASA (HASA/TMSA) 

37 Kier shape index (order 2) 207 HBSA H-bonding surface area 

44 Average Complementary Info. Cont. (order 0) 209 HDCA H-donors charged surface area 

48 Average Info. cont. (order 1) 211 HACA H-acceptors charged surface area 

52 Average Complementary Info. cont. (order 1) 218 HA dependent HDSA-1 

58 Average Structural Info. cont. (order 2) 221 HA dependent HDSA-2/TMSA 

61 Complementary Info. cont. (order 2) 234 HACA-1/TMSA 

62 Average Bonding Info. cont. (order 2) 240 Max SIGMA-SIGMA bond order

63 Bonding Info. cont. (order 2) 242 Max PI-PI bond order

65 Moment of inertia A 243 Max bonding contribution of a MO

66 Moment of inertia B 246 Max valency of a N atom

68 XY Shadow 247 Avg valency of a N atom

72 ZX Shadow 248 Min (>0.1) bond order of a N atom

73 ZX Shadow / ZX Rectangle 249 Max bond order of a N atom

74 Molecular volume 250 Avg bond order of a N atom

76 Molecular surface area 253 Avg valency of a C atom

78 Min partial charge for a C atom 257 Min valency of a H atom

80 Min partial charge for a N atom 266 Max e-n attraction for a N atom

82 Min partial charge for a H atom 267 Min atomic state energy for a N atom

85 Polarity parameter (Qmax-Qmin) 268 Max atomic state energy for a N atom

86 Polarity parameter / square distance 269 Min e-e repulsion for a C atom

89 TMSA Total molecular surface area 271 Min e-n attraction for a C atom

90 PPSA-1 Partial positive surface area 273 Min atomic state energy for a C atom

95 WPSA-1 (PPSA1*TMSA/1000) 276 Max e-e repulsion for a H atom

97 PPSA-2 Total charge weighted PPSA 283 Min exchange energy for a C-C bond

98 PNSA-2 Total charge weighted PNSA 285 Min e-e repulsion for a C-C bond

100 FPSA-2 Fractional PPSA (PPSA-2/TMSA) 287 Min e-n attraction for a C-C bond

106 DPSA-3 (PPSA3-PNSA3) 292 Max coulombic interaction for a C-C bond

107 FPSA-3 Fractional PPSA (PPSA-3/TMSA) 296 Max resonance energy for a C-N bond

108 FNSA-3 Fractional PNSA (PNSA-3/TMSA) 297 Min exchange energy for a C-N bond
112 RPC-SA (SAMPOS*RPCG) 301 Min e-n attraction for a C-N bond

113 RNCG e (QMNEG/QTMINUS) 302 Max e-n attraction for a C-N bond

114 RNCS Relative negative charged SA 304 Max n-n repulsion for a C-N bond

115 min(No.of HA, No. of HD) 305 Min coulombic interaction for a C-N bond

119 HA dependent HDSA-1/TMSA 306 Max coulombic interaction for a C-N bond

122 HA dependent HDSA-2/SQRT(TMSA) 307 Min total interaction for a C-N bond
133 HACA-1 310 Max resonance energy for a C-H bond

138 Final heat of formation 311 Min exchange energy for a C-H bond

139 Final heat of formation / # of atoms 314 Max e-e repulsion for a C-H bond

140 No. of occupied electronic levels

38 Kier shepe index (order 3) 324 Tot. molec. 1-center E-N attract./No.of atoms

168 Min net atomic charge for a C atom
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polynomial optimizations one can be pretty sure that the
solution obtained using CP-ANN method is at least as
good if not better in terms of prediction quality and ro-
bustness than the best MLR model that could be found. 

6. References
1. C. Hansch, Act. Chem. Res. 1969, 2, 232–239.

2. H. Kubinyi, QSAR: Hansch Analysis and Related Approac-
hes in Book Series: Methods and Principles in Medicinal
Chemistry, VCH, Weinheim, 1993; Published Online: 2008.

http://onlinelibrary.wiley.com/book/10.1002/97835276168

24.

3. J. Zupan, J. Gasteiger, Neural Networks and Drug Design,
Wiley-VCH, Weinheim, 1999.

4. [. @uperl, G. Mlin`ek, T. [olmajer, J. Zupan, M. Novi~, J. of
Chemometrics, 2007, 21 (7/9), 346–356.

5. J. Zupan, Kemometrija, KI in NR, Ljubljana, 2009, pp.

267–272.

6. Handbook of Genetic Algorithms, Ed. L. Davis, Van No-

strand Reinhold, New York, 1991, Chapter 6, pp. 72–90.

7. J. Zupan, Kemometrija, KI in NR, Ljubljana 2009, pp.

217–249.

8. [. @uperl, Chemometric treatment of structure property rela-
tionship for the design and transfer of drugs into cells, PhD.

Thesis, University of Ljubljana, 2010.

9. A. R. Katritzky, V. S. Lobanov, M. Karelson, CODESSA re-

ference manual, 2.0, Gainsville. 1994
10. M. Karelson, V. S. Lobanov, A. R. Katritzky, Chem. Rev.,

1996, 96, 1027–1043

Povzetek
Na nizu 53 tripsinsih inhibitorjev smo z linearnimi (MLR) in nelinearnimi metodami (ANN) modelirali njihovo afinite-

to do kovalentno vezanih ligandov. Vsaka spojina je bila predstavljena s 343 molekulskimi deskriptorji. Preverjali smo

hipotezo, da linearno modeliranje (MLR) zaradi premajhnega {tevila spojin v u~nem nizu ne nudi mo`nosti izbire to-

lik{nega {tevila deskriptorjev, da bi to zadostovalo, za izdelavo dovolj dobrega modela. Po drugi strani pa modeliranje s

protito~nimi nevronskimi mre`ami (CP ANN) nima te omejitve in zaradi tega lahko pri njej uporabimo predstavitve

spojin z ve~jim {tevilom deskriptorjev, kot je {tevilo spojin v u~enem nizu. Obe modelni metodi sta bili uporabljeni na

povsem enaki delitvi niza 53 spojin na tri skupine, na u~no, testno in validacijsko. S pomo~jo genetskega algoritma

(GA) smo preiskali vse mo`ne oblike linearnih polinomov, ki jih dovoljuje velikost u~nega niza, tj., vse velikosti sis-

tema ena~b s tremi do petindvajsetimi deskriptorji. Sistemati~en pregled z modeli narejenimi z metodo MLR ni dal

bolj{ega modela od tistega, ki jo je dal CP ANN model.


