Abstract

From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium $\text{N}_2\text{H}^+\text{I} (\text{aq}) + \text{Cs}^+(\text{nb}) \rightleftharpoons \text{I-N}_2\text{H}^+_1 (\text{nb}) + \text{Cs}^+(\text{aq})$ taking place in the two-phase water–nitrobenzene system ($\text{I} = \text{hexaarylbenzene} – \text{based receptor}; \text{aq} = \text{aqueous phase}, \text{nb} = \text{nitrobenzene phase}$) was evaluated as $\log K_{\text{ex}} (\text{N}_2\text{H}^+\text{I}, \text{I-Cs}^+)$ = $–1.2 \pm 0.1$. Further, the stability constant of the hexaarylbenzene – based receptor $\text{I-N}_2\text{H}^+_1$ complex (abbrev. $\text{I-N}_2\text{H}^+_1$) in nitrobenzene saturated with water was calculated for a temperature of $25 \, ^\circ\text{C}$: $\log \beta_{\text{nb}} (\text{I-N}_2\text{H}^+_1) = 5.6 \pm 0.2$. By using quantum mechanical DFT calculations, the most probable structure of the $\text{I-N}_2\text{H}^+_1$ complex species was solved. In this complex, the cation N_2H^+_1 synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene bottom via cation – π interaction. Finally, the calculated binding energy of the resulting complex $\text{I-N}_2\text{H}^+_1$ is $–270.5 \, \text{kJ/mol}$, confirming the relatively high stability of the considered cationic complex species.

Keywords: Hexaarylbenzene – based receptor, N_2H^+_1 cation, complexation, extraction and stability constants, water–nitrobenzene system, DFT, complex structure

1. Introduction

Hexaarylbenzene (HAB) derivatives attract a great attention because of unique propeller-shaped structure and potential application in molecular electronics and nanotechnology. It has been previously described by employing NMR spectroscopy and X-ray crystallography that a HAB – based receptor (abbrev. I; see Scheme 1) binds a single potassium cation because it interacts both with the polar ethereal fence and with the central benzene ring via cation – π interaction.\(^1\) Cation – π interaction is a well-established phenomenon in gas phase, as well as in solid state,\(^2–4\) and is known to play an important role in the stabilization of tertiary structures of various proteins.\(^5\)

The dicarbollpycobaltate anion\(^6\) and some of its halogen derivatives are very useful reagents for the extrac-
ion of various metal cations (especially Cs⁺, Sr²⁺, Ba²⁺, Eu³⁺ and Am³⁺) from aqueous solutions into a polar organic phase, both under laboratory conditions for purely theoretical or analytical purposes, and on the technological scale for the separation of some high-activity isotopes in the reprocessing of spent nuclear fuel and acidic radioactive waste.

Recently, the interaction of the K⁺ cation with the HAB – based receptor 1 has been investigated by the extraction method in the water-nitrobenzene system and by using DFT calculations. On the other hand, in the current work, the stability constant of the 1⋅N₂H₅⁺ cationic complex species in nitrobenzene saturated with water was determined. Moreover, applying quantum mechanical DFT calculations, the most probable structure of the mentioned cationic complex was derived.

2. Experimental

Preparation of the electroneutral HAB – based receptor 1 (see Scheme 1) is described elsewhere. Cesium dicarbollylcobaltate (abbrev. CsDCC) was synthesized by means of the method published by Hawthorne et al. Hydrazinium chloride (N₂H₅Cl⁻) was supplied by Aldrich. The other chemicals used (Lachema, Brno, Czech Republic) were of reagent grade purity. The radionuclide ¹³⁷Cs⁺ (Techsnaveksport, Russia) was of standard radiocative waste. K⁺ cationic complexes in nitrobenzene saturated with water was determined. Moreover, applying quantum mechanical DFT calculations, the most probable structure of the mentioned cationic complex was derived.

N₂H₅⁺(aq) + Cs⁺(nb) ⇌ 1⋅N₂H₅⁺(nb) + Cs⁺(aq); Kex(N₂H₅⁺, Cs⁺) = \frac{\text{[1⋅N}_2\text{H}_5^+\text{]}_{\text{ab}}\text{[Cs⁺]}_{\text{aq}}}{\text{[N}_2\text{H}_5^+\text{]}_{\text{aq}}\text{[1⋅Cs⁺]}_{\text{ab}}}

(4)

It is necessary to emphasize that 1 is a considerably hydrophobic receptor, practically present in the nitrobenzene phase only, where it forms – with N₂H₅⁺ and Cs⁺ – the relatively stable complexes 1⋅N₂H₅⁺ and 1⋅Cs⁺. Taking into account the conditions of electroneutrality in the organic and aqueous phases of the system under study, the mass balances of the univalent cations studied at equal volumes of the nitrobenzene and aqueous phases, as well as the measured distribution ratio of cesium, DCs = [1⋅Cs⁺]ab / [Cs⁺]aq, combined with Eq. (4), we obtain the final expression for Kex(N₂H₅⁺, 1⋅Cs⁺) in the form

Kex(N₂H₅⁺, 1⋅Cs⁺) = \frac{1}{D_{Cs}}\frac{\text{C}_{\text{in.nb}}^{\text{CsDCC}}}{(1 + D_{Cs})\text{C}_{\text{in.nb}}^{\text{N}_2\text{H}_5^+\text{Cl}^-}} - \frac{\text{C}_{\text{in.nb}}^{\text{CsDCC}}}{D_{Cs}}

(5)

3. Results and Discussion

Regarding the results of previous papers, the two-phase water-N₂H₅Cl⁻–nitrobenzene– cesium dicarbollylcobaltate (CsDCC) extraction system can be described by the following equilibrium

\[N_2H_5^+ (aq) + Cs^+(nb) \rightleftharpoons 1 \cdot N_2H_5^+(nb) + Cs^+(aq); \text{K}_{ex}(N_2H_5^+, Cs^+) \]

with the corresponding exchange extraction constant \(K_{ex} \) (N₂H₅⁺, Cs⁺); \(\text{aq} \) and \(\text{nb} \) denote the presence of the species in the aqueous and nitrobenzene phases, respectively. For the constant \(K_{ex}(N_2H_5^+, Cs^+) \) one can write

\[\log K_{ex}(N_2H_5^+, Cs^+) = \log K_i^{N_2H_5^+} - \log K_i^{Cs^+} \]

(2)

where \(K_i^{N_2H_5^+} \) and \(K_i^{Cs^+} \) are the individual extraction constants for N₂H₅⁺ and Cs⁺, respectively, in the water–nitrobenzene system. Knowing the values log \(K_i^{N_2H_5^+} = -4.849 \) and log \(K_i^{Cs^+} = -2.7 \), the exchange extraction constant \(K_{ex}^{1}(N_2H_5^+, Cs^+) \) was simply calculated from Eq. (2) as log \(K_{ex}^{1}(N_2H_5^+, Cs^+) = -2.1 \).

Previous results indicated that the two-phase water–N₂H₅Cl⁻–nitrobenzene–CsDCC extraction system (see Experimental), chosen for determination of the stability constant of the complex 1⋅N₂H₅⁺ in water-saturated nitrobenzene, can be characterized by the main chemical equilibrium

\[N_2H_5^+(aq) + 1\cdot Cs^+(nb) \rightleftharpoons 1\cdot N_2H_5^+(nb) + Cs^+(aq) \]

(3)

with the respective equilibrium extraction constant \(K_{ex}^{1}(N_2H_5^+, 1\cdot Cs^+) \):

\[K_{ex}^{1}(N_2H_5^+, 1\cdot Cs^+) = \frac{[1\cdot N_2H_5^+]_{\text{ab}}[Cs^+]_{\text{aq}}}{[N_2H_5^+]_{\text{aq}}[1\cdot Cs^+]_{\text{ab}}} \]

(4)

where \(C_{\text{in.nb}}^{\text{CsDCC}} \) is the initial concentration of N₂H₅Cl⁻ in the aqueous phase and \(C_{\text{in.nb}}^{\text{CsDCC}} \) denotes the initial concentration of CsDCC in the organic phase of the system under consideration.

In this study, from the extraction experiments and \(\gamma \)-activity measurements (see Experimental) by means of...
Eq. (5), the following value of the constant $K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{Cs}^+)$ was determined as $\log K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{Cs}^+) = -1.2 \pm 0.1$. Furthermore, with respect to previous results,$^{50-54}$ for the extraction constants $K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{Cs}^+)$ and $K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{I}^-) \text{ defined above, as well as for the stability constants of the complexes } \text{I}^+\text{N}_2\text{H}_5^+ \text{ and } \text{I}^+\text{Cs}^+ \text{ in nitrobenzene saturated with water, denoted by } \beta_{\text{nb}}(\text{I}^+\text{N}_2\text{H}_5^+) \text{ and } \beta_{\text{nb}}(\text{I}^+\text{Cs}^+), \text{ respectively, one gets}

$$\log \beta_{\text{nb}}(\text{I}^+\text{N}_2\text{H}_5^+) = \log \beta_{\text{nb}}(\text{I}^+\text{Cs}^+) + \log K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{Cs}^+) - \log K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{I}^-).$$

Using the constants $\log K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{Cs}^+)$ and $\log K_{\text{ex}}(\text{N}_2\text{H}_5^+, \text{I}^-)$ given above, the value $\log \beta_{\text{nb}}(\text{I}^+\text{Cs}^+) = 4.7 \pm 0.1$,62 and applying Eq. (6), we obtain the stability constant of the $\text{I}^+\text{N}_2\text{H}_5^+$ complex in water-saturated nitrobenzene at 25 °C as $\log \beta_{\text{nb}}(\text{I}^+\text{N}_2\text{H}_5^+) = 5.6 \pm 0.2$. This means that in the mentioned nitrobenzene medium, the stability of the $\text{I}^+\text{N}_2\text{H}_5^+$ complex under study is somewhat higher than that of the cationic complex species I^+Cs^+.

The quantum mechanical calculations were carried out at the density functional level of theory (DFT, B3LYP functional) using the Gaussian 03 suite of programs.55 The 6–31G(d) basis set was used and the optimizations were unconstrained. In order to increase the numerical accuracy and to reduce oscillations during the molecular geometry optimization, two-electron integrals and their derivatives were calculated by using the pruned (99,590) integration grid, having 99 radial shells and 590 angular points per shell, which was requested by means of the Gaussian 03 keyword “Int = UltraFine”. Although a possible influence of a polar solvent on the detailed structures of 1 and the $\text{I}^+\text{N}_2\text{H}_5^+$ complex species could be imagined, our quantum mechanical calculations in similar cases, performed in an analogous way, showed very good agreement of experiment with theory.$^{56-61}$

In the model calculations, we optimized the molecular geometries of the parent HAB – based receptor 1 and its complex with N_2H_5^+. The optimized structure of a free receptor 1 having C_3 symmetry, involving a bowl shaped cavity, which is comprised of an aromatic bottom (i.e. central benzene ring) and an ethereal fence formed by six oxygen atoms from the peripheral aryl groups, is presented in our previous work.19 The depth of the cavity, i.e. the distance between the mean plane of the aromatic bottom and that of the ethereal fence, is 2.15 Å (1 Å = 0.1 nm); the diameter of this cavity in 1 is 6.19 Å.19

The structure obtained by the full optimization of the cationic complex species $\text{I}^+\text{N}_2\text{H}_5^+$ is depicted in Figure 1, together with the lengths of the three two-center H-bonds (in Å). In this complex, the cation N_2H_5^+ synergistically interacts with the hydrophilic polar ethereal oxygen fence and with the central hydrophobic benzene bottom via cation–π interaction (the distance between the mean plane of the bottom benzene ring and the "near" nitrogen atom of N_2H_5^+ in the resulting complex $\text{I}^+\text{N}_2\text{H}_5^+$ is 2.86 Å, as pictured in Figure 1). At this point it is necessary to emphasize that the formation of the complex species $\text{I}^+\text{N}_2\text{H}_5^+$ results in the small getting longer of the respective cavity, as follows from comparison of Figure 1 with our previous results.19

Finally, the interaction energy, $E(\text{int})$, of the $\text{I}^+\text{N}_2\text{H}_5^+$ complex calculated as the difference between electronic energies of $\text{I}^+\text{N}_2\text{H}_5^+$ and isolated N_2H_5^+ and 1 species: $E(\text{int}) = E(\text{I}^+\text{N}_2\text{H}_5^+) - E(\text{N}_2\text{H}_5^+) - E(1)$ was found to be −270.5 kJ/mol, which confirms quite unambiguously the formation of the considered cationic complex $\text{I}^+\text{N}_2\text{H}_5^+$.

Figure 1: Two projections of the DFT optimized structure of the $\text{I}^+\text{N}_2\text{H}_5^+$ complex [B3LYP/31G(d)] (hydrogen atoms omitted for clarity except those of N_2H_5^+). The distance between the mean plane of the bottom benzene ring and the “near” nitrogen atom of N_2H_5^+ in the $\text{I}^+\text{N}_2\text{H}_5^+$ complex: 2.86 Å; the lengths of the three two-center H-bonds in the $\text{I}^+\text{N}_2\text{H}_5^+$ complex: 2.14 Å, 2.72 Å, 2.20 Å, 2.70 Å, and 2.00 Å, respectively; the depth of the cavity in $\text{I}^+\text{N}_2\text{H}_5^+$: 2.22 Å.
4. Acknowledgements

This work was supported by the Czech Ministry of Education, Youth and Sports (Projects MSM 4977751303 and MSM 6046137307) and by the Czech Science Foundation (Project P205/10/2280). The computer time at the MetaCentrum (Project LM 2010005), as well as at the Institute of Physics (computer Luna/Apollo), Academy of Sciences of the Czech Republic, is gratefully acknowledged. Finally, R. R. thanks the National Science Foundation for financial support.

5. References

S pomočjo ekstrakcije in meritev γ-aktivnosti smo za konstanto ekstrakcije za ravnotežje $N_2H^+ (aq) + 1\cdot Cs^+(nb) \rightleftharpoons I\cdot N_2H^+ (nb) + Cs^+(aq)$ v dvo faznem sistemu voda-nitrobenzen (1 = heksaarilbenzen – receptor; aq = vodna faza, nb = nitrobenzen) določili vrednost log $K_{ex} (N_2H^+, 1\cdot Cs^+) = –1.2 \pm 0.1$. Pri 25 °C smo določili tudi konstanto stabilnosti kompleksa heksaaril $N_2H^+ (1\cdot N_2H^+)$ v nitrobenzenu, nasičenem z vodo, ki znaša log $\beta_{nb} (1\cdot N_2H^+) = 5.6 \pm 0.2$. S pomočjo kvantomehanskih DFT izračunov smo predvideli najbolj verjetna strukturo 1\cdot N_2H^+ kompleksa. Izkazalo se je, da kation N_2H^+ sinergistično interagira s polarno etrsko skupino in centralnim hidrofobnim benzenovim obročem preko kation-π interakcij. Izračunali smo tudi vezno energijo nastalega kompleksa 1\cdot N_2H^+, ki znaša ~270.5 kJ/mol in potrjuje njegovo relativno visoko stabilnost.