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Ab stract
Due to increasing of population of diabetic patients, identifying factors for disease control has received much attention.
α-glucosidase (EC 3.2.1.20) is an essential enzyme that helps to digestion of carbohydrates such as starch and sugar.
Carbohydrates are normally converted into simple sugars, which can be absorbed through the intestine. Therefore, α-
glucosidase inhibitors can be used to decrease the blood sugar level. We have studied the effect of inhibition of N-(phe-
noxydecyl) phthalimide derivatives by a computer drug-design protocol involving homology modeling, docking simu-
lation and Quantitative Structure Activity Relationship. The homology modeling of α-glucosidase showed a structure
very similar to the crystal structure of oligo-1,6-glucosidase from Saccharomyces cerevisiae. Docking results showed
the position of inhibitors binding site is close to active site and the carboxyl oxygen in phthalimide is an effective func-
tional group for binding inhibitors to protein. The equation obtained by QSAR showed that, logIC50 decreases and so in-
hibition property increases when the size, polarity, geometry and number of halogen factors increase.
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1. In tro duc tion
Diabetes is one of the most serious, chronic diseases

that is developing with the increase in obesity and ageing
in the general population. Persistent hyperglycemia in dia-
betic patients despite appropriate therapeutic measures
leads to several complications including retinopathy, nep-
hropathy, and neuropathy.1 Some drugs have been develo-
ped for diabetes, and the best way to control postprandial
plasma glucose level is medication in combination with
dietary restriction and an exercise program. One of the
therapeutic approaches for decreasing of postprandial
hyperglycemia is to retard absorption of glucose by the in-
hibition of carbohydrate-hydrolysing enzymes, for exam-
ple α-glucosidase, in the digestive organs.2 Glucosidases
are responsible for the catalytic cleavage of glycosidic
bond in the digestive process of carbohydrates with speci-
ficity depending on the number of monosaccharides, the
position of cleavage site, and the configuration of the hy-
droxyl groups in the substrate.3 α-glucosidase (EC
3.2.1.20) has taken a special interest of the pharmaceutical

research community because it was shown that the inhibi-
tion of its catalytic activity lead to the retardation of glu-
cose absorption and the decrease in postprandial blood
glucose level. This indicates that effective α-glucosidase
inhibitors may serve as chemotherapeutic agents for clinic
use in the treatment of diabetes and obesity. The catalytic
role in digesting carbohydrate substrates also makes α-
glucosidase a therapeutic target for the other carbohydra-
te-mediated diseases including cancer, viral infections and
hepatitis4 and therefore many efforts have been made to
identify new inhibitors for α-glucosidase5–8. On the other
hand, traditional and experimental methods that are used
in drug design are expensive and time consuming. Quanti-
tative structure-activity relationship (QSAR) information
of α-glucosidases has been limited to those of a few bac-
terial strains only in ligand-free forms.9 The lack of struc-
tural information about the nature of the interactions bet-
ween α-glucosidases and the inhibitors has thus made it a
difficult task to discover good lead compounds based on
the structure-based inhibitor design. Consequently doc-
king simulation can be a useful tool for elucidating the ob-
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served activity of the identified inhibitors and binding
modes.10

So far, many studies have been done to investigate
the interaction of various inhibitors on the α-glucosidases.
In particular, based on pharmacological studies involving
thalidomide, it was found that phenylalkyl tetrachloro-
phthalimide derivatives exhibited potent α-glucosidase
inhibition.11

In this study, we investigated binding mode of N-
(phenoxydecyl)phthalimide derivatives to α-glucosidase,
by means of a drug-design protocol involving homology
modeling, docking simulations, and quantitative structu-
re-activity relationship.10 We chose the α-glucosidase
from baker’s yeast as the target protein in docking becau-
se it had been used widely in biological assays to identify
new α-glucosidase inhibitors.

2. Methods and Materials
2. 1. Ho mo logy Mo de ling: 3D Struc tu re 

Pre dic tion Using Com pu ta tio nal 
Met hods

Since there is no structural information for α-gluco-
sidase from baker’s yeast, we carried out homology mode-
ling to obtain its three-dimensional structure. Primary se-
quence of the protein includes 584 amino acid residues and
was taken from the Swiss-Prot protein sequence data bank
(http://www.expasy.org/sprot/;Accession No. P53341).12

To get a suitable structural template for homology mode-
ling, we searched for the Protein Data Bank (http://www
.rcsb.org/pdb/) using BLAST algorithm with the amino
acid sequence of the target as input. Oligo-1,6-glucosida-
se from Saccharomyces cerevisiae has the highest sequen-
ce identity with the target. So, its X-ray crystal structure
(PDB ID: 3A47)13 was selected as the template for mode-
ling. The primary structures of model and template share
72% sequence identity. The initial sequence alignment of
protein (Uniprot ID: P533411) with structural template
(PDB ID: 3A47) was carried out using the ClustalW pro-
gram with BLOSUM matrices for scoring the alignments.
Based on the highest alignment, the structure of α -gluco-
sidase from baker’s yeast was constructed using the
MODELLER 9V814 program. One thousand models were
made and the best model was selected based on DOPE
score. DOPE (Discrete Optimized Protein Energy) is the
total conformational energy of any amino acids which ma-
de by MODELLER for all models. The model which has
the most negative energy will be the most stable structure
and introduced as the best model. This model was valida-
ted by a well-established program, PROCHECK15 for the
evaluation of Ramachandran plot.

The molecular dynamics simulation was done by
Gromacs 3.3.116 to increase the accuracy of the calculated
structure and optimization of the final model. Finally, we

investigated Root Mean Square Deviation (RMSD) plot
during 20 ns simulation. 

2. 2. Doc king Si mu la tion

AutoDock 3.05 program was used17 to obtain some
energetic and structural insight into the inhibitory mecha-
nisms of the identified inhibitors of α-glucosidase, as well
as their binding modes in the active site. The ligands were
designed in Hyperchem7 and optimized with AM1 semi -
empirical method. Docking simulation was done in three
boxes: first box was taken around the whole of protein
with dimension 126 × 126 × 126 points and the spacing of
0.703 Å. Second box was taken around the active site of
protein, with dimension of 52 × 60 × 74 points and spa-
cing of 0.375 Å. Finally, after blind docking discussed in
the first step, the most populated site was determined and
the box with dimension of 52 × 58 × 66 points and the
spacing of 0.375 Å was located in that site. For each li-
gand, 250 docking runs were performed with the initial
population of 150 individuals. Maximum number of gene-
rations and energy evaluations were set to 27,000 and 2.5
× 105, respectively.

2. 3. Quan ti ta ti ve Struc tu re-Ac ti vity 
Re la tions hip
QSAR studies were applied to predict logIC50 and

find the relationship between structure and activity. The
ligands were designed by Hyperchem7.0 and then optimi-
zed by semi-empirical AM1 method. These ligands were
transferred to Dragon-3.0 software and generate 1497
descriptors. All descriptors that had zero values or con-
stant values in the data set were eliminated. The remai-
ning descriptors were used to generate the prediction mo-
dels using the SPSS 17 software package. Multiple linear
regression method (MLR) and principal component
analysis (PCA) were used to select descriptors which are
responsible for half maximal inhibitory concentration
(IC50) parameters of these compounds. PCA involves a
mathematical procedure that reduces and classifies des-
criptors to the new sets of them.

2. 4. Cross-Va li da tion Tech ni que

Since a high-correlation coefficient only indicates
how well the equations fit the data, cross-validation proce-
dure was carried out in order to explore the reliability of
the proposed models. In this aspect, the well-known “lea-
ve-one-out” (LOO) approach was used in which a number
of models were developed with one sample ignored each
time. Then, the ignored data were predicted by each mo-
del and the differences between predicted and observed
activity values were evaluated.18

The cross-validation parameters (q2
cv and PRESS)

are mentioned in the respective equation
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(1)

Which SD is standard deviation and PRESS (predic-
tive residual sum of squares) is the sum of the squared dif-
ferences between the actual and that predicted. A good q2

cv
value should be always smaller than R2. A model is consi-
dered to be significant when q2

cv > 0.3.18

3. Re sults and Dis cus sion 
3. 1. Pro tein 3D Struc tu re Pre dic tion Using

Ho mo logy Mo de ling Met hod 

Figure 1 shows the sequence alignment between α-
glucosidase MAL12 from baker’s yeast (EC 3.2.1.20) and
crystal structure of oligo-1,6-glucosidase from saccha-
romyces cerevisiae (3A47), (EC 3.2.1.10). According to
this alignment, the sequence identity and the similarity
amounts are 72% and 85%, respectively. Judging from
such a high sequence homology, a high-quality 3D struc-
ture of α-glucosidase can be expected in the homology
modeling. It is indeed well known that a homology-mode-
led structure of a target protein can be accurate enough to
be used in docking studies. Based on the sequence align-
ment shown in figure 1, structural models of α-glucosida-
se were calculated and one that has the lowest value of
MODELLER objective function was selected as the final
model.

Figure 2 displays the structure of α-glucosidase ob-
tained from the homology modeling in comparison with
the X-ray crystal structure of oligo-1,6-glucosidase from
saccharomyces that was used as the template. The target
and the template possess a very similar structure. The two
enzymes also share the catalytic residues that are situated
in their respective active sites in a similar fashion. To this
way that Asp215, Glu277 and Asp352 residues form the
catalytic triad in the template protein while the Asp214,
Glu276 and Asp349 form in S. cerevisiae α-glucosidase,
respectively. Two more residues, His109 and His348 of
oligo-1,6-glucosidase which may be involved in substrate
binding are also conserved in α-glucosidase (His111 and
His348, respectively). It is because of both enzymes ca-
talyze the hydrolysis of terminal glycosidic bond of car-
bohydrates. However, α-glucosidase is more extended in

Fi gu re 1: Se quen ce align ment bet ween α-glu co si da se (EC.3.2.1.20) and oli go-1,6-glu co si da se (3A47A). The iden tity and the si mi la rity bet ween
the cor res pon ding re si dues are in di ca ted in red and green, res pec ti vely. The ac ti ve si tes cha rac te ri zed by blue co lor.

Fi gu re 2: Ste reo view of tem pla te (A), mo de led (B) and both fit ted
(C) struc tu re of α-glu co si da se

a) b) c)
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amino acid packing than oligo-1,6-glucosidase due to the
possession of 5 less amino acid residues in the alignment
position. 

The results of validation with PROCHECK showed
84.5% of residues of 3D structure are located in favorite
region.

Figure 3 shows the DOPE (Discrete Optimized
Protein Energy) score profile energy of the homology-
modeled α-glucosidase in comparison to that of the X-
ray structure of oligo-1,6-glucosidase. In this work, mo-
lecular dynamics simulations and energy minimization
were performed by GROMACS. Figure 4 shows the cor-
responding Root Mean Square Deviation (RMSD) plot.
As can be seen the system has reached stability during
20 ns.

Fi gu re 3: Com pa ri son of the DOPE energy pro fi les for the ho mo -
logy-mo de led struc tu re of α-glu co si da se (blue) and the X-ray
struc tu re of oli go-1,6-glu co si da se (red)

Fi gu re 4: RMSD plot du ring 20 ns si mu la tion ob tai ned by mo le cu -
lar dyna mics

3. 2. Mo le cu lar Doc king
Docking studies were performed to check the most

probable binding site of new N-(phenoxydecyl) phthali-
mide drivatives. The chemical structures and the inhibi-
tory activities of these newly identified inhibitors were
shown in Tables 1–3.20

In order to survey the correlation between inhibitory
activities and binding energy, we made the box that sur-

Table 1: α-Glucosidase inhibitory activity of substituted N-(phe -
no x yalkyl) phthalimide derivatives

Compound n IC50(μM)
8a 2 296 ± 4
9a 3 240 ± 40
25a 4 33 ± 3
10a 5 20.2 ± 0.2
11a 6 10.3 ± 0.1
18a 8 6.5 ± 0.2
19a 9 3.04 ± 0.01
20a 10 2.5 ± 0.2

Tab le 2: α-Glu co si da se in hi bi tory ac ti vity of N-(phe nox yalkyl)
phtha li mi de de ri va ti ves

Com- n R1 R2 R3 R4 IC50( μM )
pound
8a 2 H H H H 296 ± 4
8b 2 H H Cl H 94 ± 4
8e 2 CH3 H Cl H 14.8 ± 0.8
8f 2 CH3 H Cl CH3 13.0 ± 0.1
9a 3 H H H H 240 ± 40
9b 3 H H Cl H 59.0 ± 0.5
9c 3 Cl Cl H H 15.0 ± 0.8
9d 3 H Cl Cl H 7.55 ± 0.25
9e 3 CH3 H Cl H 8.9 ± 0.4
9f 3 CH3 H Cl CH3 9.5 ± 0.3

rounded whole of protein, then the position of the most
negative docking energies were analyzed and it was found
that the major of them locate near the active. We called
that site as docking site. Then we put the box in the bin-
ding site. Alternative site was active site that we put the
box on active site. So we have three cases; whole of pro-
tein, active site and binding site. 

Figure 5 shows docking sites (Lys155, Phe157,
Glu304, Arg312) and active sites (Asp214, Glu276 and
Asp349) of ligands to protein as well as position of two si-
tes relative to each other. These results verify that, the li-
gands prefer to bind near the active site.

Figure 6 illustrates the calculated binding mode of
compounds 20k and 25a (as the samples) in the active site
and docking site of α-glucosidase. It is noteworthy that
the carboxyl oxygen in phthalimide forms hydrogen bond
with Asp349 and Glu276 in both position of active site
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and binding site. Since, these two residues play an impor-
tant role in the most inhibitors of α-glucosidase,21 it looks
like that the carboxyl oxygen can be an effective functio-
nal group for binding of inhibitors to protein and conse-
quently phthalimide and its derivatives could be introdu-
ced as new inhibitors. The residues of two ligands mentio-
ned above were listed in Table 4. The most negative free
energies obtained by Autodock and predicted logIC50 we-
re presented in Table 5.

Figu re 5: Po si tion of ac ti ve si te (blue) and doc king si te (pink) ob -
tai ned from doc king cal cu la tion

Table 3: α-Glucosidase inhibitory activity of N-(phenoxydecyl)
phthalimide derivatives

Com- R1 R2 R3 R4 IC50(μM)
pound
20a H H H H 2.5 ± 0.2
20b H H Cl H 1.2 ± 0.2
20d H Cl Cl H 1.00 ± 0.01
20f CH3 H Cl CH3 1.34 ± 0.04
20g Cl H Cl H 1.19 ± 0.11
20h H CF3 NO2 H 0.83 ± 0.05
20i H H CH3 H 2.10 ± 0.01
20j H H NO2 H 0.86 ± 0.03
20k NO2 H H H 1.78 ± 0.01
20l H NO2 H H 1.075 ± 0.005
20m CH3 H H CH3 3.25 ± 0.02
20n H Cl H H 1.09 ± 0.08
20o H Cl H CH3 0.91 ± 0.05
20p H H CF3 H 0.83 ± 0.12
20q NO2 H Cl H 0.475 ± 0.05
20r H Cl Cl NO2 0.52 ± 0.02
20s Cl H Cl NO2 0.75 ± 0.01
20t NO2 H NO2 H 0.97 ± 0.04
20u NO2 H CF3 H 1.31 ± 0.01
20v CH3 NO2 Cl CH3 3.6 ± 1.5
20w CH3 H NO2 CH3 1.32 ± 0.12
20x H Cl NO2 CH3 0.65 ± 0.01

Fi gu re 6: Bin ding mo de of 20k and 25a as the sam ples in the ac ti -
ve si te (A,B) and doc king si te(C,D) res pec ti vely, pink dot ted li nes
in di ca te hydro gen bonds.
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Correlation between docking energies and log IC50
were obtained and correlation coefficient (R) for three
docking cases; whole of enzyme, active site and binding
site are equal to 0.290, 0.185 and 0.801. Figure 6 shows
correlation between docking energy and logIC50 only for
docking site that has better correlation. Thus, we conclude
docking site has higher correlation than others. Thus, mo-
re tendency for interaction between ligand and enzyme
has less logIC50 and more ligand efficiency. 

Fi gu re 7: Cor re la tion bet ween doc king free energy (ΔG) and in hi -
bi tion ac ti vi ties (log IC50) for doc king si te

3. 3. Quan ti ta ti ve Struc tu re-Ac ti vity 
Re la tions hip
The 1497 molecular properties (descriptors) were

calculated for 37 ligands using Dragon-3.0. Logarithm of
inhibitory activities was employed as dependent variables
to find the relationship between structure and activity.
Multiple linear regression analysis (MLR) of molecular
descriptors was carried out using the stepwise strategy in
the SPSS 17. The best obtained regression equation for
the logarithm of inhibitory activities of 37 derivatives by
MLR model is:

Table 4: Amino acids residues in the active site and docking site for compounds 20k and 25a. The common parts in two sites were depicted as bold.

20k 25a
Active site Phe157, Phe158, Phe177, Thr215, Glu276, Ala 278, His279, Phe158,Phe177, Asp214, Glu276, His279, 

Phe 300, Glu304, Arg312, Asp349, Gln350, Asp408, Arg439 Phe300, Glu304, Arg312, Asp349, Gln350

Docking site Phe158, Phe177, Asp214, Glu276, His279, Phe300, Val303, Glu304, Phe157, Phe158, Phe177, Asp214, His245, 
Thr307,Ser308,PRO309, Phe311, Arg312, Asp349, Gln350, Arg439 Glu276, Ala278, Phe300, Arg439

Table 5. The most negative docking free energies and predicted
logIC50

Com- Whole Active Binding Experi- Predicted 
pound enzyme site site mental logIC50

logIC50
MLR PCA

8a –8.46 –8.56 –8.95 2.47 2.49 1.83
8b –8.59 –8.98 –9.37 1.97 2.03 1.57
8e –9.51 –9.05 –9.64 1.17 1.25 1.39
8f –8.57 –9.55 –9.82 1.11 0.89 1.21
9a –4.58 –9.15 –8.16 2.38 2.20 1.67
9b –5.01 –9.40 –9.83 1.77 1.67 1.44
9c –9.09 –9.73 –9.92 1.18 0.96 1.16
9d –10.43 –9.97 –10.16 0.88 1.19 1.10
9e –8.93 –9.91 –9.99 0.95 1.01 1.20
9f –9.62 –10.01 –10.45 0.98 0.82 1.02
25a –7.18 –9.49 –9.69 1.52 1.61 1.33
10a –4.76 –10.06 –9.88 1.30 1.14 1.11
11a –6.79 –9.92 –10.64 1.01 0.82 0.86
18a –7.77 –10.21 –11.09 0.81 0.77 0.74
19a –7.22 –11.31 –10.45 0.48 0.59 0.54
20a –7.93 –10.92 –9.55 0.40 0.00 0.38
20b –9.49 –11.41 –13.11 0.08 –0.06 0.033
20d –9.10 –9.62 –13.38 0.00 0.16 0.02
20f –7.68 –8.91 –13.45 0.13 –0.15 0.00
20g –9.93 –10.44 –13.33 0.07 0.11 –0.16
20h –9.40 –10.16 –14.09 –0.08 –0.01 0.35
20i –9.43 –10.21 –13.23 0.32 0.14 0.36
20j –7.53 –11.18 –8.73 –0.07 0.00 0.40
20k –7.78 –9.68 –13.33 0.25 –0.01 0.34
20l –9.87 –10.65 –13.25 0.03 0.31 0.16
20m –10.32 –11.45 –13.93 0.51 0.31 0.16
20n –6.95 –10.64 –13.4 0.04 –0.10 0.19
20o –8.81 –11.29 –13.33 –0.04 0.08 0.18
20p –8.80 –10.57 –12.99 –0.08 –0.07 0.05
20q –8.55 –10.50 –12.88 –0.32 –0.28 –0.18
20r –8.15 –10.12 –14.15 –0.28 –0.23 –0.19
20s –7.79 –10.12 –13.85 –0.12 0.08 0.17
20t –7.57 –6.12 –13.38 –0.01 0.10 –0.04
20u –10.47 –12.21 –13.46 0.12 –0.09 –0.27
20v –9.28 –9.25 –13.49 0.56 0.38 –0.05
20w –5.78 –5.80 –12.72 0.12 0.08 –0.11
20x –6.45 –9.08 –13.66 –0.19 –0.05 1.47

(2)
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Where IC5 is belong to topological class, MATS7e,
GATS8m and GATS7e to electronegativity, (MWC09) to
size, Mor04u to 3D-MORSE and BEHm4 to BCUT des-
criptors. Now we define in detail some of these descrip-
tors such as; Broto-Moreau Autocorrelation Descriptors
(labeled as ATS), Moran Autocorrelation Descriptors (la-
beled as MATS) Geary Autocorrelation Descriptors (labe-
led as GATS). 

2D Autocorrelation Indices are defined as 

(3)

Where wi and wj are the weights of the atoms i and j,
w∈(m, p, e, v). The symbol for each of the autocorrelation
descriptors is followed by two indices d and w, where d
and w stands for the lag and weight, respectively. Thus,
for example, ATS4m means the Broto-Moreau Autocorre-
lation descriptor of lag 4 weighted by mass.The lag is de-
fined as the topological distance d between pairs of atoms.
The topological distance between a pair of atoms (i, j) is
given in the ijth entry in the Topological Level Matrix.
The lags can have any value from the set of {0, 1, 2, 3, 4,
5, 6, 7, 8}. The weights can be m (relative atomic mass), p
(polarizability), e (Sanderson electronegativity) and v
(Van der Waals volume). Relative mass is defined as the
ratio of atomic mass of an atom to that of carbon. Simi-
larly, the other three weights p, e and v are scaled by the
corresponding values for carbon.

MATS7e: Moran Autocorrelation Descriptors are defi-
ned as:

MATSdW=(n)(A)/(B), (4)

Where n is the number of atoms, A and B are 

and

wi and wj are the weights of the atoms i and j, w∈(m, p, e,
ν), w is the mean of wi over the entire molecule, and δij is
Kronecker delta, that is, δij = 1 if the ijth entry in the Topo-
logical Level Matrix is = d, and δij = 0 otherwise.22

GATS8m: GATS7e Geary Autocorrelation Descriptors
are definds as

(5)

and

Other variables are defined same as previous equa-
tion [18].

MWC09: Self-returning walk counts are defined as:

(6)

A walk starting and ending on the same vertex, i.e.
closed in itself and called a self-returning walk. In particu-
lar, the diagonal elements (i, j) in the kth power matrix Ak

denote the number of self-returning walks from the ith

atom to itself.

Mor04u:MoRSE descriptors
3D MoRSE descriptors (3D Molecule Representa-

tion of Structures based on Electron diffraction) are deri-
ved from infrared spectra simulation using a generalized
scattering function.23

(7)

where, rij is the Euclidean distance between the atoms i
and j, and wi and wj are the weights of the atoms i and j
respectively.24

Figure 8A shows correlation between predicted
LogIC50 by MLR and experimental LogIC50 for 37 
N-(phenoxydecyl)phthalimide derivatives with a regres-
sion coefficient of 0.975.

Fi gu re 8: Cor re la tion bet ween pre dic ted Log IC50 by (A) MLR (B)
PCA and ex pe ri men tal Log IC50. Trai ning and test sets we re shown
by fil led and open symbols, res pec ti vely.

As we see in the equation (2) we can predict the log-
IC50 for different compounds that we know their descrip-
tor values. On the other hand, these descriptors may be not
familiar for all chemists and biologists. So we selected so-
me of more common descriptors that can be discussed the
biological activity in detail. Table 6 has listed the 99 fami-
liar descriptors among 1497 descriptors as well as their
definition and classification. There are different properties
such as size, charge, polarity, aromaticity, geometry or
shape and hydrophobicity. Bivariate correlations were ob-
tained between each descriptors and logIC50 and correla-
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tion coefficients (R) values were listed in the last column
of Table 6. Positive and negative values of R indicate di-
rect and inverse correlation between logIC50 and descrip-
tors. Namely positive values show that logIC50 increases
with increasing the cited descriptors and negative values
show decreases with increasing the descriptor. As table
shows, the logIC50 decreases with size, polarity, number
of functional group, geometry and hydrophobicty and in-
creases with aromaticty. 

Pascale, et al20 reported that the efficacy of the inhi-
bition activity depends on the chain length of the substra-
te and compound 20a possessing 10 carbons afforded the
highest levels of activity. Structure-activity relationship
studies indicated a critical role of electron-withdrawing

substituents at the phenoxy group for the activity. In addi-
tion derivatives having a chlorine atom along with a
strong electron-withdrawing group, such as a nitro group,
were the most potent of the series. 

Thus, they conclude that inhibition activity increa-
ses with number of CH2 group and Cl atoms, and electro-
negativity of NO2. On the other hand our findings also
confirm their results so that the electronegativity in table 6
(descriptor 4 “sum of atomic Sanderson electronegativi-
ties scaled on Carbon atom)” has negative correlation.
Also increasing number of nitro group (descriptor 90)
causes decreasing the logIC50 and increasing biological
activity. Number of chlorine (descriptor 24) or halogen
atom (25) also has negative correlation with logIC50.

Table 6. Symbol, definition and classification of 99 used descriptors for PCA analysis

NO Symbol Definition Class R
1 MW molecular weight constitutional descriptors –0.598
2 AMW average molecular weight constitutional descriptors 0.370
3 Sv sum of atomic van der Waals volumes (scaled on Carbon atom) constitutional descriptors –0.835
4 Se sum of atomic Sanderson electronegativities (scaled on Carbon atom constitutional descriptors –0.823
5 Sp sum of atomic polarizabilities (scaled on Carbon atom) constitutional descriptors –0.834
6 Ss sum of Kier-Hall electrotopological states constitutional descriptors –0.705
7 Mv mean atomic van der Waals volume (scaled on Carbon atom) constitutional descriptors 0.638
8 Me mean atomic Sanderson electronegativity (scaled on Carbon atom) constitutional descriptors 0.083
9 Mp mean atomic polarizability (scaled on Carbon atom) constitutional descriptors 0.594
10 Ms mean electrotopological state constitutional descriptors –0.101
11 nAT number of atoms constitutional descriptors –0.817
12 nSK number of non-H atoms constitutional descriptors –0.827
13 nBT number of bonds constitutional descriptors –0.817
14 nBO number of non-H bonds constitutional descriptors –0.827
15 nBM number of multiple bonds constitutional descriptors –0.489
16 SCBO sum of conventional bond orders (H-depleted) constitutional descriptors –0.814
17 RBN number of rotatable bonds constitutional descriptors –0.818
18 RBF rotatable bond fraction constitutional descriptors –0.839
19 nDB number of double bonds constitutional descriptors –0.489
20 nH number of Hydrogen atoms constitutional descriptors –0.765
21 nC number of Carbon atoms constitutional descriptors –0.810
22 nN number of Nitrogen atoms constitutional descriptors –0.489
23 nO number of Oxygen atoms constitutional descriptors –0.489
24 nCL number of Chlorine atoms constitutional descriptors –0.103
25 nX number of halogen atoms constitutional descriptors –0.281
26 qpmax maximum positive charge charge descriptors –0.527
27 qnmax maximum negative charge charge descriptors –0.326
28 Qpos total positive charge charge descriptors –0.766
29 Qneg total negative charge charge descriptors –0.765
30 Qtot total absolute charge (electronic charge index - ECI) charge descriptors -0.765
31 Qmean mean absolute charge (charge polarization) charge descriptors 0.172
32 Q2 total squared charge charge descriptors -0.640
33 RPCG relative positive charge charge descriptors 0.399
34 RNCG relative negative charge charge descriptors 0.792
35 SPP subpolarity parameter charge descriptors -0.524
36 TE1 topographic electronic descriptor charge descriptors -0.783
37 TE2 topographic electronic descriptor (bond resctricted) charge descriptors -0.769
38 PCWTe partial charge weighted topological electronic charge charge descriptors -0.776
39 LDip local dipole index charge descriptors -0.067
40 HOMA Harmonic Oscillator Model of Aromaticity index aromaticity indices 0.368
41 RCI Jug RC index aromaticity indices 0.337
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NO Symbol Definition Class R

42 AROM aromaticity (trial) aromaticity indices 0.181
43 HOMT HOMA total (trial) aromaticity indices 0.362
44 J3D 3D-Balaban index geometrical descriptors -0.116
45 H3D 3D-Harary index geometrical descriptors -0.805
46 AGDD average geometric distance degree geometrical descriptors -0.811
47 DDI D/D index geometrical descriptors -0.811
48 ADDD average distance/distance degree geometrical descriptors -0.816
49 G1 gravitational index G1 geometrical descriptors -0.782
50 G2 gravitational index G2 geometrical descriptors -0.812
51 RGyr radius of gyration (mass weighted) geometrical descriptors -0.817
52 SPAN span R geometrical descriptors -0.776
53 SPAM average span R geometrical descriptors 0.052
54 MEcc molecular eccentricity geometrical descriptors -0.169
55 SPH Spherosity geometrical descriptors -0.344
56 ASP Asphericity geometrical descriptors -0.552
57 FDI folding degree index geometrical descriptors -0.283
58 PJI3 3D Petijean shape index geometrical descriptors -0.272
59 L/Bw length-to-breadth ratio by WHIM geometrical descriptors -0.499
60 SEig absolute eigenvalue sum on geometry matrix geometrical descriptors -0.821
61 DISPm d COMMA2 value / weighted by atomic masses geometrical descriptors -0.482
62 QXXm Qxx COMMA2 value / weighted by atomic masses geometrical descriptors -0.483
63 QYYm Qyy COMMA2 value / weighted by atomic masses geometrical descriptors -0.307
64 QZZm Qzz COMMA2 value / weighted by atomic masses geometrical descriptors -0.816
65 DISPv COMMA2 value / weighted by atomic van der Waals volumes geometrical descriptors -0.286
66 QXXv Qxx COMMA2 value / weighted by atomic van der Waals volumes geometrical descriptors -0.538
67 QYYv Qyy COMMA2 value / weighted by atomic van der Waals volumes geometrical descriptors -0.550
68 QZZv Qzz COMMA2 value / weighted by atomic van der Waals volumes geometrical descriptors -0.812
69 DISPe d COMMA2 value / weighted by atomic Sanderson electronegativities geometrical descriptors -0.484
70 QXXe Qxx COMMA2 value / weighted by atomic Sanderson electronegativities geometrical descriptors -0.590
71 QYYe Qyy COMMA2 value / weighted by atomic Sanderson electronegativities geometrical descriptors -0.656
72 QZZe Qzz COMMA2 value / weighted by atomic Sanderson electronegativities geometrical descriptors -0.807
73 DISPp d COMMA2 value / weighted by atomic polarizabilities geometrical descriptors -0.425
74 QXXp Qxx COMMA2 value / weighted by atomic polarizabilities geometrical descriptors -0.539
75 QYYp Qyy COMMA2 value / weighted by atomic polarizabilities geometrical descriptors -0.545
76 QZZp QCOMMA2 value / weighted by atomic polarizabilities geometrical descriptors -0.812
77 G(N..N) sum of geometrical distances between N..N geometrical descriptors -0.469
78 G(N..O) sum of geometrical distances between N..O geometrical descriptors -0.519
79 G(N..F) sum of geometrical distances between N..F geometrical descriptors -0.229
80 G(N..Cl) sum of geometrical distances between N..Cl geometrical descriptors -0.333
81 G(O..O) sum of geometrical distances between O..O geometrical descriptors -0.551
82 G(O..F) sum of geometrical distances between O..F geometrical descriptors -0.229
83 G(O..Cl) sum of geometrical distances between O..Cl geometrical descriptors -0.304
84 G(Cl..Cl) sum of geometrical distances between Cl..Cl geometrical descriptors -0.211
85 nCp number of total primary C(sp3) functional groups -0.099
86 nCs number of total secondary C(sp3) functional groups -0.799
87 nCq number of total quaternary C(sp3) functional groups -0.230
88 nCaH number of unsubstituted aromatic C(sp2) functional groups 0.429
89 nCaR number of substituted aromatic C(sp2) functional groups -0.429
90 nNO2Ph number of nitro groups (aromatic) functional groups -0.489
91 nRCX3 number of RCX3 functional groups -0.230
92 nPhX number of X-C on aromatic ring functional groups -0.103
93 nHAcc number of acceptor atoms for H-bonds (N O F) functional groups -0.505
94 Ui unsaturation index empirical descriptors -0.491
95 Hy hydrophilic factor empirical descriptors -0.112
96 ARR aromatic ratio empirical descriptors 0.851
97 MR Ghose-Crippen molar refractivity Properties -0.846
98 PSA fragment-based polar surface area Properties -0.489
99 MLOGP Moriguchi octanol-water partition coeff. (logP) Properties -0.817
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Number of CH2 in reference 20 or number of total secon-
dary C(sp3) (descriptor 86) in this study has good and ne-
gative correlation with logIC50. So our finding not only is
similar to reference 20 but also, it gives a quantitative rat-
her than qualitative interpretation for all results. Also
number and variety of descriptors in our study is more
than cited reference.

Data reduction by PCA method was done on these
99 descriptors to reduce and classify the descriptors. Tab-
le 7 shows the actual factors that were extracted. Phrase
“Rotation Sums of Squared Loadings,” shows only those
factors that met cut-off criterion (eigenvalues greater than
1). SPSS software always extracts as many factors ini-
tially as there are variables in the dataset, but the rest of
these didn’t make the grade. The “% of variance” column
tells us how much of the total variability (in all of the va-
riables together) can be accounted for by each of these
summary scales or factors. Factor 1 accounts for 42.093%
of the variability in all variables, factor 2 accounts for
23.882 and so on.

Finally, the Rotated Component Matrix shows the
factor loadings for each variable (Table 8). We went ac -
ross each row, selected the factor that each variable loaded

most strongly on higher than absolute 0.500 and removed
those less than absolute 0.500. Thus missing values in
Table 8 related to descriptors having loading number less
than absolute 0.5. The first, second, third and fourth co-
lumns loaded strongly on factors 1 to 4, which we called
size, polarity, geometry and number of halogen, respecti-
vely.

Then, by performing MLR on the resulted PCs
(Principal component regression, PCR) we can obtain an
equation between logIC50 and PCs.

(8)

The predicted values of logIC50 by PCA were listed
in Table 5. Figure 8B shows correlation between predicted
and experimental logIC50 by PCA analyses. 

The correlation coefficient (R) for prediction of in-
hibitory activation was 0.849 by PCA model. 

Table 7. Total variance explained by four principal components (PCs)

Com- Initial Extraction Sums Rotation Sums  
ponent Eigenvalues of Squared Loadings of SquaredLoadings

Total % of Cumulative Total % of Cumulative Total % of Cumulative 
Variance % Variance % Variance %

PC1 51.780 52.303 52.303 51.780 52.303 52.303 41.673 42.093 42.093
PC2 14.867 15.017 67.320 14.867 15.017 67.320 23.643 23.882 65.975
PC3 9.114 9.206 76.526 9.114 9.206 76.526 8.790 8.878 74.854
PC4 6.851 6.920 83.446 6.851 6.920 83.446 8.507 8.593 83.446

Table 8. Rotated component matrixof reduced selected descriptors
into 4 factors

Symbol PC1 PC2 PC3 PC4
(Size) (polarity) (geometry) (number 

of halogen)
MW 0.792
AMW –0.75 0.575
Sv 0.955
Se 0.954
Sp 0.962
Ss 0.603 0.737
Mv –0.909
Me 0.706
Mp –0.846
Ms 0.893
nAT 0.967
nSK 0.857
nBT 0.967
nBO 0.857
nBM 0.876

Symbol PC1 PC2 PC3 PC4
(Size) (polarity) (geometry) (number 

of halogen)

SCBO 0.828 0.519
RBN 0.958
RBF 0.953
nDB 0.876
nH 0.988
nC 0.98
nN 0.876
nO 0.876
nCL 0.926
nX 0.762
Qpmax 0.865
Qnmax 0.765
Qpos 0.842 0.529
Qneg 0.841 0.53
Qtot 0.841 0.529
Qmean 0.866
Q2 0.588 0.801
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Symbol PC1 PC2 PC3 PC4
(Size) (polarity) (geometry) (number 

of halogen)

QXXv 0.898
QYYv
QZZv 0.96
DISPe 0.751
QXXe 0.828
QYYe 0.609 0.507
QZZe 0.951
DISPp 0.521
QXXp 0.911
QYYp
QZZp 0.965
G(N..N) 0.867
G(N..O) 0.838
G(N..F)
G(N..Cl) 0.889
G(O..O) 0.814
G(O..F)
G(O..Cl) 0.905
G(Cl..Cl) 0.802
nCp 0.653
nCs 0.97
nCq
nCaH –0.581 –0.539
nCaR 0.581 0.539
nNO2Ph 0.876
nRCX3
nPhX 0.926
nHAcc 0.919
Ui 0.876
Hy 0.844
ARR –0.89
MR 0.922
PSA 0.876
MLOGP 0.907

Symbol PC1 PC2 PC3 PC4
(Size) (polarity) (geometry) (number 

of halogen)

RPCG –0.712 0.527
RNCG –0.924
SPP 0.874
TE1 0.857
TE2 0.838 0.523
PCWTe 0.871
LDip 0.945
HOMA
RCI
AROM
HOMT
J3D 0.928
H3D 0.962
AGDD 0.971
DDI 0.967
ADDD 0.976
G1 0.619 0.58
G2 0.73 0.554
RGyr 0.957
SPAN 0.969
SPAM –0.890
MEcc 0.622
SPH 0.704
ASP 0.837
FDI 0.669 –0.612
PJI3 0.583 –0.532
L/Bw 0.753
SEig 0.968
DISPm 0.649
QXXm 0.756
QYYm 0.619
QZZm 0.888
DISPv
QXXv 0.898

In order to investigate of model validity we perfor-
med a cross validation. We took some of compounds as
test set (8a, 8b, 8f, 9f, 11a, 20f, 20i, 20l, 20o, 20r, 20u and
20x in Table 5) and the reminder as training set. Then us-
ing leave-one-out methods we obtained q2

cv based on equa-
tion (1). These values were inserted in the Fig. 8. As we
see the q2

cv values are higher than 0.3 and lower than R2.

4. Conc lu sions 

The purposes of this study were to survey the inhibi-
tion effect of N-(phenoxydecyl) phthalimide derivatives
on α-glucosidase enzyme, and finding the key features of
responsible α-glucosidase inhibitory activity. It was done
by a computer drug-design protocol involving homology
modeling for target protein, docking simulation and
Quantitative Structure Activity Relationship. Firstly the
homology modeled structure of S. cerevisiae α-glucosida-

se was built and used for molecular docking to define the
interaction mode of the N-(phenoxydecyl) phthalimide
derivatives with the protein. The results showed the im-
portant role of carboxyl group in binding of ligands with
the active site of protein by formation of hydrogen bonds.
Results of MLR on total and selected descriptors, showed
a realistic correlation between predicted and experimental
values. Experimental data showed that the inhibition acti-
vity increases with chain length, number of chlorine and
electronegativity, while our results not only confirm the
experimental data but also introduced new variables such
as aromaticity, hydrophobicity, polarity to investigate the
data in detail and quantitative manner. The QSAR studies
showed that the inhibition increases (logIC50 decreases)
with increasing size, polarity, geometry and number of ha-
logen factors and decreasing of aromaticity. Consecuti-
vely, these results revealed that N-(phenoxydecyl) phtha-
limide derivatives bind to site near the active site residues
and free energy of binding has relatively good correlation
with logIC50. 
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Povzetek
[tevilo bolnikov z diabetesom se pove~uje, zato je razpozavanje dejavnikov, ki uravnavajo bolezen, zelo pomembno. 
α-Glukozidaza (EC 3.2.1.20) je esencialni encim, ki sodeluje pri presnovi ogljikovih hidratov, kot je npr. {krob.
Ogljikovi hidrati se obi~ajno presnovijo do enostavnih sladkorjev, ki se lahko absorbirajo v tankem ~revesu. Zato lahko
α-glukozidazne inhibitorje uporabljamo za zni`anje ravni krvnega sladkorja. Z ra~unalni{kim programom za na~rtovan-
je zdravil, ki vklju~uje homologno modeliranje, sidranje in QSAR analizo, smo preiskovali u~inke inhibicije derivatov
N-(fenoksidecil) ftalimida. Homologni model α-glukozidaze ka`e na strukturo, ki je zelo podbna kristalni strukturi oli-
go-1,6-glukozidaze iz kvasovke Saccharomyces cerevisiae. Rezultati sidranja so pokazali, da je polo`aj vezavnega mes-
ta na inhibitorju blizu aktivnega mesta in da je karbonilni kisik na ftalimidu u~inkovita funkcionalna skupina za vezavo
inhibitorja na protein. Ena~ba, pridobjena s QSAR analizo, pa je pokazala, da se inhibicijske lastnosti derivatov 
N-(fenoksidecil) ftalimida zmanj{ujejo, ~e se pove~uje velikost, polarnost, geometrija in {tevilo halogenskih faktorjev. 


