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Ab stract
A force between two equally charged surfaces depends on the composition of intervening solution. While the force is al-
ways repulsive for monovalent counterions, multivalent counterions turn the interaction into the attractive one. An
example of the attraction between like charged surfaces is the aggregation of colloidal particles mediated by multivalent
counterions with spatially separated charges. A model system represents the colloids by equally charged planar surfa-
ces. In our consideration the intervening salt-free solution is composed of rod-like dimmers. Some of dimmers can be
disconnected to monovalent ions. This model system was solved using the Monte Carlo (MC) simulations and the Pois-
son-Boltzmann (PB) theory, which was extended to deal with rigid complex ions. The study was made by varying a ran-
ge of parameters including the surface charge density and the ratio of the number of monovalent counterions to the num-
ber of all counterions. The calculated pressure shows that with increasing surface charge density the lower fraction of
dimeric counterions is needed to induce attractive force between surfaces. A good agreement between the MC simula-
tions and the theoretical results was obtained.
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1. Intro duc tion
Aqueous solutions containing charged colloidal par-

ticles and small ions represent a cornerstone of biological
systems and biotechnological applications. Typical exam-
ples of charged colloidal particles include proteins, micel-
les, lamellar liquid crystals, and silica. These particles are
significantly larger than small ions which justifies the
choice of a model where intervening solution is placed
between two equally charged planar surfaces. The interve-
ning solution contains simple monovalent charge-neutra-
lizing counterions and also monovalent coions, if salt is
present. Even salt-free colloidal systems are stable as pre-
dicted by the DLVO theory.1, 2 However, replacing mono-
valent ions with divalent ones gives rise to the effective at-
tractive force between colloidal particles, which was ob-
served for both planar geometry3,4 and also for isotropic
systems containing spherical colloids.5 Presence of ef-
fective attraction between colloidal particles is required
for a system to undergo phase separation.6, 7, 8

Attraction between equally charged particles is ad-
ditionally enhanced in both magnitude and range if poly-
centric multivalent ions are present. It has long been
known that oppositely charged short polyions cause ag-
gregation of colloidal particles by bridging mechanism.9

This was later demonstrated by simulation studies10, 11 and
supported by theoretical approaches.12 Complex multiva-
lent ions with spatially separated charge are also common
in biological systems. Short polyamines spermine and
spermidine, which play an important role in DNA packa-
ging, are such an example.13,14

It is therefore of crucial importance to understand
the mechanism and circumstances when the effective at-
tractive Coulomb electrostatic interactions between ma-
croions emerge.

Traditional approach to study electrolyte solutions is
the Poisson-Boltzmann theory, which treats small ions as
point charges. The Poisson-Boltzmann theory neglects
correlations between small counterions, which limit its
validity toward low concentrations, small surface charge
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density and monovalent ions. This theory was recently ex-
tended to allow for treatment of rigid multivalent ions
with spatially separated charge distribution.15,16 The sim-
plest situation of rigid multivalent ions is that of rod-like
ions where the charges are connected by a stiff rod of gi-
ven length. The fixed separation of charges within the
rods introduces the intra-ionic correlations into the Pois-
son-Boltzmann theory. This extended theory can predict
attraction between like-charged plates. The detailed consi-
derations have shown that the introduced intra-ionic cor-
relations cause the bridging between the charged plates.
The theory was generalized to systems with polydisperse
rod lengths and arbitrary charge distribution along the
rods. Also the influence of added salt was considered.17

On the other hand, the MC computer simulations are
powerful and exact tool for solving model systems. With
MC simulations we can test the theoretical predictions
and consider the cases which could not be covered by the
theory. We showed that for sufficiently long rods there is a
very good agreement between the extended Poisson-
Boltzmann theory and MC simulations.18,19 Kim et al.20

have confirmed that the bridging configuration contribute
to the attraction between like charged plates.

The attractive force between like charged surfaces
was also experimentally observed. The first observation of
attraction between two highly negatively charged clays
was reported for CaCl2 solution.21,22,23

In this article we study a system of two like charged
plates in the solution of divalent rod-like and monovalent
counterions. We utilize both the extended Poisson-Boltz-
mann theory and canonical Monte Carlo computer simu-
lations to study the effect of increased fraction of rigid di-
valent counterions with spatially separated charges on the
force between equally charged plates.

2. Mo del and Met hods

An aqueous salt-free colloidal solution where colloi-
dal particles are much larger than counterions, can be mo-
deled as a planar gap between two equally and uniformly
charged surfaces and filled with charge-neutralizing inter-
vening solution containing positive point like counterions
as illustrated in Figure 1.

The counterions can be either divalent in a form of a
rigid dimer with the bulk concentration n0 either monova-
lent with the bulk concentrations m0. The planar surfaces
are negatively charged with the surface charge density σ.
The length of rod-like counterions is equal to l. Each rod-
like ion has two charges each located at one end of the rod.

2. 1. Pois son-Boltz mann Theory

We introduce a Cartesian coordinate system whose x
axis is oriented perpendicular to the charged surfaces.
They are located at x = 0 and x = D. Due to sufficiently

large planar surfaces and the translational invariance of
the system along y and z directions, we can describe the
systems with functions depending only on the x coordina-
te. See Fig. 1 for an illustration of the system.

The overall charge neutrality of the system requires

formula
(1)

where e is the elementary charge. The first term in Eq. 1 re-
presents the number of positive charges of rod-like counte-
rions between the charged surfaces. As shown in Fig. 1,
along the x axis the reference charges of rod-like counte-
rions are located at x and the second charges at x + s. Cen-
tral quantity to describe location and orientation of rod-like
counterions is the ionic distribution function n(x,s). The
number density of reference charges at position x is

formula
(2)

where we integrate over all possible projections s.The se-
cond term in Eq. 1 represents the number of monovalent
counterions between the charged surfaces, which is calcu-
lated via integral of the number density of monovalent
counterions m(x). Eq. 1 ensures that the number of positi-
ve elementary charges in the solution is equal to the num-
ber of elementary charges on the surfaces.

The electrostatic free energy of the system, F, mea-
sured per unit area A and expressed in units of the thermal
energy kBT (here kB is Boltzmann’s constant and T is the
absolute temperature) can be expressed as

x

0 Dx x+s

l

σ σ

Figure 1: Schematic illustration of two like-charged planar surfa-
ces, located at x = 0 and x = D with σ denoting the surface charge
density. The surfaces are immersed in an electrolyte solution that
contains a mixture of divalent rod-like and monovalent point-like
counterions. Rod-like ions have two charges at the ending of the
rods. This illustration is connected to the theoretical description.
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where νi is the effective volume of counterions and Ψ is
the reduced electrostatic potential. The prime in Ψ’(x) de-
notes the first derivative with respect to the coordina-
te x. The Bjerrum length in water at a room temperature is
lB = 0.714 nm. The first term in Eq. 3 corresponds to mean
electrostatic field energy, the second term includes the
orientational and positional entropic contribution of rod-li-
ke counterions to the free energy and the third term inclu-
des the translational entropic contribution of monovalent
counterions to the free energy.  〈...〉 = 1/2l ∫

–

l

l
...ds denotes

the averaging over all possible rotations of rod-like counte-
rions. The fourth term in Eq. 3 ensures the electro-neutra-
lity of the whole system and λ is the Lagrange multiplier.
This free energy is given on mean field level where the in-
tra-ionic correlations are accounted for. The steric interac-
tions of rods with the charged surfaces are taken into ac-
count via the external non-electrostatic potential U(x,s).

The presence of rod-like and monovalent point-like
counterions implies the volume charge density

formula (4)

where the first term collects all charges of the rod-like
counterions, i.e. the reference charges located at x and se-
cond charges whose reference charges are located at x.
The last term collects all charges of monovalent ions.

In thermal equilibrium the free energy adopts a mi-
nimum. The functional minimization of the free energy F
leads to the modified Boltzmann distributions

formula (5)

and

formula (6)

Insertion of Eqs. (5) and (6) into volume charge den-
sity ρ(x) (Eq. 4) and then into the Poisson’s equation Ψ"(x)
= –4πlBρ(x)/e results in the integral differential equation

formula

(7)

This integral differential equation can be solved nu-
merically subject to the following two boundary condi-
tions

formula (8)

and

formula (9)

where we recall that σ denotes the surface charge density
on each of the two planar surfaces.

The parameters νi are searched for in order to satisfy
the ratio between the number of monovalent counterions
and all charges in the solution

formula (10)

For the external non-electrostatic potential we chose

formula (11)

2. 2. Mon te Car lo Com pu ter Si mu la tion

Canonical Monte Carlo simulations were performed
using the integrated Monte Carlo / Molecular Dynamic /
Brownian dynamic simulation package Molsim,24 follo-
wing the standard Metropolis scheme. Total 3000 elemen-
tary charges in monomeric and dimeric form were placed
randomly into the Monte Carlo simulation box. The size
of the MC box was calculated according to the chosen
surface charge density to achieve electroneutrality.

Since all mobile ions are of the same sign, it is pos-
sible to use point like ions as in the PB theory. A rigid di-
mer is a particle consisting of two »atoms« and is moved
in the MC box as a single entity with two interaction sites,
preserving its internal structure.

A trial move consists of both random displacements
for both types of particles; for dimeric counterions a trial
move also includes a random rotation. When a dimeric
counterion is moved, an interaction energy difference
emerging from both interaction sites is calculated and
used as in the case of monomeric counterions. Displace-
ment parameters were chosen to obtain approximately
50% acceptance rate. 60,000 attempted moves per particle
were used for equilibration followed by 200,000 attemp-
ted moves during production runs. Interparticle interac-
tions were calculated as described elsewhere.25 Long ran-
ge corrections due to ionic distribution outside the MC

(3)
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box are found to be small and were therefore not used in
present simulations.19 To calculate single particle distribu-
tions, the x-axis was always divided into 200 bins. The
standard deviation of values in histograms was less than
0.2% for each separate bin in all cases.

3. Re sults and Dis cus sion

For a model system both structural and thermodyna-
mic parameters are evaluated. We performed calculations
for two different values of surface charge density, –0.05
C/m2 and –0.10 C/m2. The length of divalent rod-like ions
is fixed to l = 4 nm in all cases. Variation in the distance
between two plates, D, corresponds to variation in con-
centration, and was between 2 and 10 nm.

Figs. 2 and 3 show single particle distributions of
both types of counterions as a function of the distance
from the left charged plate. The profiles are calculated for
two different surface charge densities and four different
parameters η. Generally, the concentration of counterions
decreases with increasing distance from the left charged

plate. At the midplane the concentration reaches a mini-
mum and then further increases when approaching the
right plate. As one should expect, positively charged
counterions accumulate near negatively charged surfaces,
and are depleted from the inner part of the slit. Density
profiles are similar for both types of counterions. Compa-
rison between Fig. 2 and 3 reveal that the accumulation of
both types of counterions is more pronounced at a higher
surface charge density. If the fraction of monomeric coun-
terions is larger than the fraction of their dimeric counter-
parts, its profile has larger values throughout the slit’s
width. The theoretical results agree (full and dashed lines)
with the results of MC simulations (stars and squares).

The osmotic pressure exerted by rod-like and mono-
valent counterions on two equally charged surfaces can be
calculated from the contact theorem, first derived by Hen-
derson et. al.26 and used in systems with dimeric ions:27

formula
(12)

where n(0) is the concentration of reference charges of
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Figure 2: Concentration profiles of rod-like counterions (full lines) and monovalent point-like counterions (dashed lines) for four different parame-
ters η. Full and dashed lines are the theoretical results whereas the stars and squares are the results of MC simulations. The model parameters are l
= 4 nm, D = 4 nm and σ = – 0.05 C/m2.
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rod-like counterions at the charged surface and m(0) is the
concentration of monovalent counterions at the charged
surface. Figs. 4 and 5 show the pressure as a function of
the distance between the charged surfaces for three diffe-
rent parameters η and for two surface charge densities.
The pressure p first decreases with increasing distance D
and then crosses the abscissa. Let’s note that the energeti-
cally most favorable situation is at the pressure equal to
zero. From Figs. 4 and 5 we see that the most favorable di-
stance D between the charged surfaces is approximately
equal to the length of divalent ions. This corresponds to
the bridging, where the rod-like ions are oriented perpen-
dicular to the charge surfaces. The rod-like ions connect
left and right surfaces. After the pressure passes the abs-
cissa the pressure continue to decrease, reaches a mini-
mum and then further converges to zero. For sufficiently
large fraction of monovalent counterions to all counte-
rions the pressure monotonously decreases with increa-
sing distance between the plates. The interaction between
the like charged plates is always repulsive.

However, only a thorough inspection of density profi-
les’ contact values, required for pressure evaluation, reveals

its subtle yet nonuniform variation with increasing distance
between two charged plates. Pressure is for monovalent
counterions positive for all D regardless of surface charge
density, σ. For point-like divalent counterions it was de-
monstrated that they induce an attractive force between pla-
tes, thus indicating a possible phase separation.3,4 In the
work of Guldbrand et al.3 was shown that pointlike divalent
counterions induce attraction between two plates at surface
charge density larger than ∼ 0.1 C/m2. Our data (Fig. 6)
show very weak attraction at the same surface charge den-
sity, which conforms to the results from the literature.3

Short divalent counterions are therefore also expec-
ted to give rise to attractive force; however, a question at
which fraction this happens, is addressed in this study. At
σ = –0.1 C/m2 the fraction of monomers at which the at-
tractive interaction vanishes, is about 70%. At σ = –0.05
C/m2 this fraction is roughly two times lower, which leads
to the conclusion that equal number of dimeric counte-
rions per unit area is needed to induce attraction between
plates.

If the rod length is zero, a rod-like ion becomes an
ordinary point-like divalent ion. A Poisson-Boltzmann
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Figure 3: Concentration profiles of rod-like counterions (full lines) and monovalent point-like counterions (dashed lines) for different parameters
η. Full and dashed lines are the theoretical results whereas the stars and squares are the results of MC simulations. The model parameters are l = 4
nm, D = 4 nm and σ = – 0.1 C/m2.
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study of salt-free polyelectrolyte solution containing mix-
ture of mono and divalent counterions only also show
nonlinear dependence of osmotic coefficient on the frac-
tion of monovalent counterions.28

Monovalent pointlike counterions are unable to in-
duce attraction3 and introducing excluded volume further
weakens electrostatic interactions. This also holds for
dumbbells, especially if they are monovalent. Generally,
the ion valency, shape of ions and surface charge density
influence the interaction between like-charged surfaces.

A recent theoretical study29 involving only charge-
neutralizing chains of different stiffness confined between
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Figure 4: Pressure p as a function of the plate separation D for
three different parameters: η = 0 (full line; stars), η = 0,4 (dashed
line; squares) and η = 1 (dotted line; triangles). The lines are the
theoretical predictions whereas the symbols correspond to MC si-
mulations. The model parameters are l = 4 nm and σ = – 0.05 C/m2.
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Figure 5: Pressure p as a function of the plate separation D for
three different parameters: η = 0 (full line; stars), η = 0.4 (dashed
line; squares) and η = 1 (dotted line; triangles). The lines are the
theoretical predictions whereas the symbols correspond to MC si-
mulations. The model parameters are l = 4 nm and σ = – 0,1 C/m2.
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Figure 6: Pressure p as a function of the plate separation D for rod-
like counterions of length l = 4 nm (stars) and point-like divalent
counterions (squares). The model parameter is σ = –0.1 C/m2.
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reas the distance between the plates is D = 4 nm. The reference
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schematic presentation of the most probable orientations of the rod-
like ions. The distance between the surfaces is D = l.
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two uniformly charged plates also displays similar pressu-
re dependence on the separation between plates.

To better understand the structure of the intervening
solution when attraction between the two equally and uni-
formly charged plates takes place, orientation of rigid rod-
like ions was evaluated during calculations. Fig. 7 shows
the conditional probability density p(s |x = 0) as a function
of the projection s of the rod-like counterions with respect
to the x-axis. The reference charges are located at the left
charged plate at x = 0. Here we consider the case D = l.
The conditional probability density first decreases with
increasing projection s. It reaches a minimum and then
further increases with increasing s. The situation is sche-
matically presented in Fig. 7 (right panel). At high surface
charge densities both orientations are more pronounced
and other orientations are less pronounced.30 Surprisingly,
the conditional probability density was found to be almost
insensitive on the parameter η. These results help us to
understand the bridging mechanism. Namely, we have
two most probable orientations of rod-like counterions: i)
parallel and ii) perpendicular to the charged surface. Tho-
se rod-like counterions which are oriented perpendicular
to the charged surfaces connect both charged surface –
they bridge left and right charged surfaces.

4. Conc lu sions

In this study we considered a model system of two
like charged plates embedded in a salt-free solution com-
posed of a mixture of divalent rod-like and monovalent
counterions. The system was solved with both the exten-
ded Poisson-Boltzmann theory and the canonical Monte
Carlo computer simulations. Results show that attractive
force between equally charged plates start to appear at a
certain fraction of divalent rod-like counterions. At larger
surface charge density smaller fraction of rod-like counte-
rions is needed to turn the repulsive force between the pla-
tes into the attractive one. Rod-like ions which are orien-
ted perpendicular to the plates gives rise to the bridging
and thus contribute most to the effective attraction. It
should be emphasized that theoretical predictions agree
very well with computer simulation data for all parame-
ters used in the present work.
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Povzetek
Sila, ki deluje na dve vzporedni in enako nabiti plo{~i, je odvisna od sestave raztopine elektrolita, ki zapolnjuje vmesni
prostor. ^e so v raztopini prisotni samo monovalentni protiioni, je sila vedno odbojna, medtem ko v primeru dvovalent-
nih ionov pri dovolj veliki gostoti naboja postane privla~na. Kraj{i ve~valentni ioni s prostorsko lo~enim nabojem pov-
zro~ijo agregacijo koloidnih delcev. V tem ~lanku nam koloidno suspenzijo predstavlja enakomerno nabita re`a, v kate-
ri se nahajajo tako to~kasti monovalentni kot tudi pali~asti divalentni protiioni. Modelni sistem smo obravnavali s kano-
ni~no Monte Carlo simulacijo ter z raz{irjeno Poisson-Boltzmannovo teorijo, ki lahko obravnava pali~aste ione. Razi-
skali smo vpliva povr{inske gostote naboja na stenah re`e ter dele`a pali~astih protiionov na strukturne in termodinam-
ske lastnosti modelnega sistema. Rezultati ka`ejo, da je pri bolj nabitih povr{inah potreben manj{i dele` pali~astih dvo-
valentnih protiionov za nastanek privla~ne sile med nabitima povr{inama. Prav tako smo ugotovili, da se rezultati raz{ir-
jene Poisson – Boltzmannove teorije in Monte Carlo simulacij zelo dobro ujemajo med seboj.


