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Abstract
The concept of atom-bond connectivity (ABC) index was introduced in the chemical graph theory in 1998. The atom-

bond connectivity (ABC) index of a graph G defined as

where E(G) is the edge set and di is the degree of vertex vi of G. Very recently Graovac et al.1 define a new version of the

ABC index as

where ni denotes the number of vertices of G whose distances to vertex vi are smaller than those to the other vertex vj of

the edge e = vi vj, and nj is defined analogously. In this paper we determine the maximal unicyclic graphs with respect to

new atom-bond connectivity index (ABC2).
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1. Introduction
Mathematical chemistry is a branch of theoretical

chemistry using mathematical methods to discuss and pre-
dict molecular properties without necessarily referring to
quantum mechanics.2–4 Chemical graph theory is a branch
of mathematical chemistry which applies graph theory in
mathematical modeling of chemical phenomena.5 This
theory has an important effect on the development of the
chemical sciences.

Topological indices are numbers associated with
chemical structures derived from their hydrogen-depleted
graphs as a tool for compact and effective description of
structural formulas which are used to study and predict
the structure-property correlations of organic compounds.
Molecular descriptors play significant role in chemistry,
pharmacology, etc. Among them, topological indices have
a prominent place.6 One of the best known and widely

used is the connectivity index, χ, introduced in 1975 by
Milan Randi}.7 Estrada et al. proposed a new index,
known as the atom-bond connectivity index (ABC).8 This
index is defined as

formula

Where E(G) is the edge set and di is the degree of
vertex vi of G. The ABC index has proven to be a valuable
predictive index in the study of the heat of formation in
alkanes.8–9 The maithematical properties of this index was
reported. 10–19

Let G = (V,E) be a simple connected graph with ver-
tex set V(G) = {v1, v2, …, vn} and edge set E(G), where
|V(G)| = n and |E(G)| = m. Let di be the degree of vertex vi
for i = 1, 2, …, n. A vertex of a graph is said to be pendent
if its neighborhood contains exactly one vertex. An edge
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of a graph is said to be pendent if one of its vertices is a
pendent vertex. We denote by Cn and Pn, the cycle and the
path on n vertices, respectively, throughout this paper. For
other undefined notations and terminology from graph
theory, the readers are suggested to refer.20

Let G be a connected graph and e = vivj be an edge
of G. The number of vertices of G whose distance to the
vertex vi is smaller than the distance to the vertex vj is de-
noted by ni = ni(e|G). Analogously, nj = nj(e|G) is the num-
ber of vertices of G whose distance to the vertex vj is
smaller than to vi. Graovac et al.1 define a new version of
the ABC index as

formula

Example 1.1. Dendrimers are nanostructures that
can be precisely designed and manufactured for a wide
variety of applications, such as drug delivery, gene deliv-
ery and diagnostics etc. Let D[n] be a dendrimer where n
is the step of growth in it.

Note that, in D[n], there are 4(1 + 2 + … + 2n–1) + 1
= 4(2n – 1) + 1 vertices and 4(2n – 1) edges. By the defini-
tion of (ABC2)-index, we find that

formula

For the edges linking the vertices on ith layer and
the ones on (i + 1) th layer each of which occurs 2i+2

times. When n = 1, D[n] is just star S5. So we have
ABC2(D[1]) = ABC2(S5) = 2√3. Set

Formula

Therefore, for n ≥ 2, we have

formula

For example, we have

formula

and

Example 1.2. Any connected graph with maximum
degree not exceeding 4 is called molecular graph. Any
(molecular) graph is called conjugated if it has a perfect
matching. Conjugated unicyclic graphs have some impor-
tant applications in chemistry, especially mathematical
chemistry. Conjugated hydrocarbon molecules considered
in the Hückel  molecule orbital theory are usually repre-
sented by the carbon-atom skeleton graphs with perfect
matching, of which all vertices have degrees not more
than 4. For more details of chemical applications of conju-
gated molecular graphs, see [21, 22, 23]. Let U(k) be the
set of conjugated unicyclic graphs of order 2k. Two conju-
gated unicyclic molecular graphs, denoted by U1(k) and
U2(k), are shown in Fig. 1.

Figure 1. Two graphs U1(k) and U2(k).

Now we will calculate the ABC2 index of U1(k) and
U2(k) as follows:

formula

formula
when k is even and

formula
when k is odd.

The goal of this paper is to determine the maximal
unicyclic graphs with respect to new atom-bond connec-
tivity index (ABC2).

2. Some Lemmas

In this section, we shall list some results that will be
needed in the next section.

Lemma 2.1. Let n ≥ 8 be a positive integer. Then

Formula for 8 ≤ n ≤ 15
and

formula for n ≥ 16.
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Proof: We have

formula

Using the above result, we get

(1)

Let us consider a function

formula

Then

as x ≥ 8 and by (1).
Thus f(x) is an increasing function for x ≥ 8. Since

f(15) < 0 and f(16) > 0,we get the required result.

Lemma 2.2. Let n ≥ 7 be a positive integer. Then

Formula for n = 9
(2)

and

formula
(3)

Moreover, the equality holds in (3) if and only if n = 8.
Proof: For n = 7,

formula

and (3) holds. For n = 8 the equality holds in (3). For n = 9,

formula

and (2) holds. We have

formula

and

Now it remains to prove this lemma for n ≥ 14. For
this, let us consider a function

formula
Then

Formula

as x ≥ 14 and (2x–4)(3x–13) > (x–4)(x–5).
Thus we have f (x) is an increasing function for x ≥

14 and hence f (x) ≥ 0.699 for x ≥ 14.
Now,

as 4(n–5) > 3(n–4)

Using the above result

Formula for n ≥ 6,

we get the required result (3) for n ≥ 14
Lemma 2.3. Let x, n be positive integers with

(n–3)/2 ≤ x ≤ n – 6. Then

formula
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with equality holding if and only if x = n–6.
Proof: First we assume that n ≥ 12. Now we have to

prove the following two claims.
Claim 1. Let x,n be positive integer numbers with

(n–3)/2 ≤ x ≤ n – 6, n ≥ 12. Also let r be a positive integer
number such that x + r = n – 3. Then

(i) formula
and

(ii) formula

Proof of Claim 1 (i). Since (n–3)/2 ≤ x ≤ n – 6 and x
+ r = n – 3, we have x ≥ r ≥ 3. Again since both x and r are
integers with x + r = n – 3, then the minimum value of xr
is 3(n – 6). Now we have to show that

formula

that is, 2n2 –27n + 54 > 0, that is, n ≥ 12, which, evidently,
is always obeyed.

Proof of Claim 1 (ii). Now,

by Arithmetic-Geometric Mean Inequality

Formula (5)

Now we have to show that

formula

that is,

formula

that is, ≥ n + 1

as xr ≥ 3(n – 6), that is, 4n2 – 57n + 114 ≥ 0, that is, n ≥ 12,
which, evidently, is always obeyed.

Claim 2. Let x, n be positive integer numbers with
(n–3)/2 ≤ x ≤ n – 6, n ≥ 12. Then

(6)

Proof of Claim 2. Let r be a positive integer number
such that x + r = n – 3. Since (n–3)/2 ≤ x ≤ n – 6 and x + r
= n – 3, we have x ≥ r ≥ 3. Now,

by Claim 1 (i) and (ii)

as x + r = n – 3

From the above inequality, we can easily get

formula
that is,

From the above, we get the required result (6).
Let us consider a function

formula

Then we have

and by Claim 2.
Thus f (x) is strictly increasing function for (n–3)/2

≤ x ≤ n – 6, n ≥ 12. Hence we get the required result (4) for
n ≥ 12. Moreover, the equality holds in (4) if and only if x
= n – 6.

Next we assume that n ≤ 11. Since (n–3)/2 ≤ x ≤ n –
6, we have n ≥ 9. Thus (n,x) = (9,3) or (10, 4) or (11, 5).
For (n,x) = (9,3), the equality holds in (4). For (n,x) =
(10,4), the equality holds in (4). For (n,x) = (11,4),

formula

and (4) holds. Moreover, for (n,x) = (11, 5), the equality
holds in (4). This completes the proof.

Theorem 2.4. Let x, n be positive integer numbers
with (n–3)/2 ≤ x ≤ n – 4.

(i) If n = 7, then

Formula
(7)
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with equality holding in (7) if and only if x = 2.
(ii) If n = 8, then

Formula (8)

with equality holding in (8) if and only if x = 3.
(iii)  If n = 9, then

Formula (9)

with equality holding in (9) if and only if x = 3.
(iv) If 10 ≤ n ≤ 15, then

(10)

with equality holding in (10) if and only if x = n – 5.
(v) If n ≥ 16, then

(11)

with equality holding in (11) if and only if x = n – 4.
Proof: (i)  Since n = 7, we have either x = 2 or x = 3.

We have

formula

Using the above result, we get the required result
(7). Moreover, the equality holds in (7) if and only if x = 2.

(ii) Since n = 8, we have either x = 3 or x = 4. We
have

formula

Using the above result, we get the required result
(8). Moreover, the equality holds in (8) if and only if x = 3.

(iii) Since n = 9, we have either x = 3 or x = 4 or x =
5. We have

formula

Using the above result, we get the required result
(9). Moreover, the equality holds in (9) if and only if x = 3.

(iv) If x = n – 5, then the equality holds in (10).
Otherwise, x ≠ n – 5. Since 10 ≤ n ≤ 15, by Lemmas

2.1, 2.2 and 2.3, we get

(v) If x = n – 4, then the equality holds in (11).
Otherwise, x ≠ n – 4. Since n ≥ 16, by Lemmas
2.1, 2.2 and 2.3, we get

This completes the proof.

3. Upper Bound on the ABC2
Index of Unicyclic Graphs

Figure 2. S(0, 2, 5, 4, 2, 1, 4, 3).

Now we turn to determine the maximal new atom-
bond connectivity index (ABC2) among all connected uni-
cyclic graphs of order n. Let S(m1, m2, …, mk) be a uni-
cyclic graph of order n with girth k and n – k pendent ver-
tices, where mi is the number of pendent vertices adjacent
to i-th vertex of the cycle. We consider that the vertices in
the cycle are numbered clockwise (see Fig. 2). Clearly,
∑k

i=1 mi = n – k and S(0, 0, …, 0) = Cn. The cycle of a uni-
cyclic graph G is denoted by C(G). Denote by C’4 is a uni-
cyclic graph of order 5 obtained from cycle C4 with one
pendent edge attached to any one vertex of cycle C4.
Denote by C’3, is a unicyclic graph of order 5 obtained
from cycle C3 with one end of path P3 attached to any one
vertex of cycle C3.

Let G be a connected graph of order n. For 2 ≤ l ≤ nj
≤ ni, vivj ∈ E(G),
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Thus we have

Formula (12)

with equality holding if and only if ni = nj = l.
Moreover, for pendent edge vivj ∈ E(G),

Formula (13)

Lemma 3.1. Suppose that vivj is a cut-edge of con-
nected unicyclic graph G of order n (>3), but vivj is not a
pendent edge. Let vi denote the vertex obtained from iden-
tifying vi and vj in Gvivj, and G1 = Gvivj + vivj (See, Fig. 3).
Then ABC2(G) < ABC2(G

1).
Proof: Denote by

formula

Figure 3. Two graphs G and G1.

Then we have

formula

From given condition we get ABC2(G, vrvs) = ABC2

(G1, vrvs), vrvs ≠ vivj.
Moreover, for vivj ∈ E(G), ni ≥ 2 and nj ≥ 2 as vivj is

not a pendent edge in G. Thus we have

formula

Moreover, vivj is a pendent edge in G1 and hence

Now we have
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Theorem 3.2. Let G be a connected unicyclic graph
of order n (>3) with girth k. Then

(14)

with equality holding if and only if G ≅ S(m1, m2, ..., mk).

Proof: If G is isomorphic to S(m1, m2, ..., mk), then
the equality holds in (14). Otherwise, G ≅ S(m1, m2, ...,
mk). Then there exists a non-pendent edge vivj in G such
that vivj ∉ E(C(G)). We consider the transformation de-
fined in Lemma 3.1. Then by Lemma 3.1, we have ABC2

(G) < ABC2 (G
1), that is, we have increased the value of

(ABC2)-index. If G1 is S(m1, m2, …, mk), then we are done.
Otherwise, we continue the same transformation for suffi-
cient number of times, we arrive at S(m1, m2, …, mk). This
completes the proof.

Now we give an upper bound on the ABC2 – index of
unicyclic graph G in terms of order n.

Theorem 3.3. Let G be a connected unicyclic graph
of order n (> 3).

(i) If n = 4, then

(15)

with equality holding in (15) if and only if G ≅ C4.

(ii) If n = 5, then

(16)

with equality holding in (16) if and only if G ≅ S(1, 1, 0).
(iii)  If n = 6, then

formula (17)

with equality holding in (17) if and only if G ≅ S(2, 1, 0).
(iv) If n = 7, then

formula (18)

with equality holding in (18) if and only if G ≅ S(2, 2, 0).
(v) If n = 8, then

formula (19)
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with equality holding in (19) if and only if G ≅ S(3, 2, 0).
(vi) If n = 9, then

formula
(20)

with equality holding in (20) if and only if G ≅ S(3, 3, 0).
(vii) If 10 ≤ n ≤ 15, then

formula (21)

with equality holding in (21) if and only if G ≅ S(n – 5, 2, 0).
(viii)  If n ≥ 16, then

formula (22)

with equality holding in (22) if and only if G ≅ S(n – 4, 1, 0).

Proof: If n = 4, then G ≅ C4 or G ≅ S(1, 0, 0). We have

formula

From the above, we get the required result (15). Mo-
reover, the equality holds in (15) if and only if G ≅ C4. If n
= 5, then G ≅ C5 or G ≅ C4’ or G ≅ S(1, 1, 0), or G ≅ S(2, 0,
0), or G ≅ C3’. Now we have

formula

From the above, we get the required result (16). Mo-
reover, the equality holds in (16) if and only if G ≅ S(1, 1,
0). Otherwise, n ≥ 6. Let G be a connected unicyclic graph
of order n with girth k. Then k ≥ 3. We consider two cases
(a) k ≥ 4, (b) k = 3.

Case (a): k ≥ 4. In this case there are at most n – 4
pendent edges and at least 4 non-pendent edges in uni-
cyclic graph G. Since k ≥ 4, for each non-pendent edge vivj
∈ E(G), ni ≥ 2 and nj ≥ 2 as G is unicyclic graph. For each
non-pendent edge vivj ∈ E(G), by (12),

Formula (23)

Using the above result and by (13), we get

(24)

Case (b): k = 3. By Theorem 3.2, we get ABC2 (G) ≤
ABC2 (S(m1, m2, m3)). Moreover, the equality holds if and
only if G ≅ S(m1, m2, m3). Without loss of generality, we
can assume that m1 ≥ m2 ≥ m3 ≥ 0, m1 + m2 + m3 = n – 3.
Now we consider the following three subcases:

Subcase (i): m1 ≥ m2 ≥ m3 ≥ 1. For each non-pendent
edge vivj ∈ E(S(m1, m2, m3)), ni ≥ 2 and nj ≥ 2. By (12), we get

Using the above result, we get
ABC2 (G) ≤ ABC2 (S(m1, m2, m3))

(25)

Subcase (ii): m2 = m3 = 0. There are exactly one non-
pendent edge vivj ∈ E(S(n – 3, 0, 0)) such that ni = 1 and nj
= 1 and hence

Also there are exactly two non-pendent edges vivj ∈ E(S(n
– 3, 0, 0)) such that ni = 1 and nj = n – 2 and hence

Thus we have ABC2 (G) ≤ ABC2 (S(n – 3, 0, 0))

formula
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(26)

Subcase (iii): m3 = 0. In this subcase m1 + m2 = n – 3,
m1 ≥ m2 ≥ 1, that is, (n – 3)/2 ≤ m1 ≤ n – 4. Now, ABC2 (G)
≤ ABC2 (S(m1, m2, 0))

From the above result and by Theorem 2.4, we get
the following:

If n = 6, then

with equality holding if and only if G ≅ S(2, 1, 0).
If n = 7, then

with equality holding if and only if G ≅ S(2, 2, 0).
If n = 8, then

formula

with equality holding if and only if G ≅ S(3, 2, 0).
If n = 9, then

formula

with equality holding if and only if G ≅ S(3, 3, 0).
If 10 ≤ n ≤ 15, then

formula

with equality holding if and only if G ≅ S(n – 5, 2, 0).
If n ≥ 16, then

with equality holding if and only if G ≅ S(n – 4, 1, 0).
Now we have

by Theorem 2.4 and n ≥ 10
and

for n ≥ 6. Using the above results, we get
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Using the above results with (24), (25) and (26), we
get the required result. This completes the proof.

4. Conclusion

Graovac et al.1 define the ABC2 index as a new ver-
sion of the ABC index. In this paper we obtain the maxi-
mal unicyclic graphs with respect to new atom-bond con-
nectivity index (ABC2). Maximal new atom-bond connec-
tivity index in the case of bicyclic graphs and minimal
atom-bond connectivity index in the case of trees, uni-
cyclic graphs and bicyclic graphs, remains an open prob-
lem. Moreover, some extremal graphs with respect to new
ABC index are still unknown which include certain chem-
ical structure such as fullerene, benzenoid hydrocarbons,
etc. And finding the chemical application of this new ABC
index is more attractive in the near future.
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Povzetek
Koncept »atom-vez« indeksa povezanosti (ABC) je bil pred kratkim vpeljan v kemijsko teorijo grafov. »Atom-vez« in-

deks povezanosti (ABC) grafa G je definiran kot

kjer je E(G) niz povezav in di stopnja vozli{~a (to~ke) vi od G. Graovac in soavtorji je definiral novo verzijo ABC indeksa kot

kjer ni predstavlja {tevilo vozli{~ v G katerega razdalje do vozli{~a vi so manj{e od tistih do drugega vozli{~a vj povezave

e = vi vj, ni pa je definiran analogno. V tem ~lanku determiniramo maksimalne enocikli~ne grafe glede na novi »atom-

vez« indeks povezanosti (ABC2).


