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Abstract
The relationship between retention behavior of eight 1,2-O-cyclohexylidene xylofuranose derivatives and their molecu-

lar characteristics was studied using chemometric Quantitative Structure–Retention Relationships (QSRR) approach.

QSRR analysis was carried out on the retention parameter RM
0, obtained by normal-phase thin-layer chromatography,

by using molecular descriptors, as well as partition coefficient for n-octanol/water bi-phase system (logP). Molecular

descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchi-

cal cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors

that best describe the retention behavior of the compounds investigated, and to determine the similarities between mo-

lecules. MLR equations, that represent the retention measure RM
0 as a function of the in silico molecular descriptors we-

re established. The statistical quality of the generated mathematical models was determined by standard statistical mea-

sures and cross-validation parameters. Obtained results indicate that previously mentioned mathematical models are

statistically significant and can successfully predict retention behavior of examined xylofuranose derivatives.

Keywords: 1,2-O-cyclohexylidene xylofuranose derivatives; QSRR; Molecular descriptors; Multivariate data analysis;

TLC.

1. Introduction
Cyclohexylidene acetals of monosaccharides belong

to the group of the most common cyclic acetals used in
carbohydrate chemistry.1 Examined 1,2-O-cyclohexylide-
ne xylofuranose derivatives are often used as key interme-
diates and starting compounds in organic synthesis of va-
rious biomolecules.2–8 These derivatives are also of great
interest for chromatography due to variety of their func-
tional groups.9

It is well known that mechanisms of chromatograp-
hic separation are very complex and depend on many fac-
tors such as type of chromatographic system, physicoche-
mical characteristics of analytes, experimental conditions,
etc. Therefore, in order to understand chromatographic
processes, it is very useful to establish mathematical mo-
dels which can predict the retention behavior of analytes
on the basis of their structural characteristics in applied

chromatographic system. Determination of the correla-
tions between molecular structure and retention behavior
of molecules in different chromatographic systems is the
main task of Quantitative Structure–Retention Relations-
hips (QSRR) chemometric method.10 Chemometric pro-
cessing of chromatographic data can reveal systematic in-
formation both about the analytes (retention, physicoche-
mical properties, etc.) and about the stationary phases stu-
died (the molecular mechanism of separation).11–14 In QS-
RR models, the retention (e.g. the retention parameter
RM

0) of solutes in specific chromatographic system is pre-
sented as a function of molecular descriptors of the analy-
tes.13,15 The main parameters used in QSRR studies are
physicochemical parameters, non-specific parameters and
topological indices.16

QSRR analysis is also applicable for prediction of
the retention behavior of newly synthesized molecu-
les13,15,17 and quantitative comparison of separation pro-



421Acta Chim. Slov. 2013, 60, (2), 420–428

Kova~evi} et al.:   Quantitative Structure-Retention Relationship Analysis ...

perties of individual types of chromatographic layers.18

QSRR studies are widely applied in high-performance li-
quid chromatography (HPLC), gas chromatography (GC)
and thin-layer chromatography (TLC).19 QSRRs in TLC
are used for prediction of retention and determination of
lipophilicity and other physicochemical constants.20,21

In the case of TLC, retention of an analyte is descri-
bed by the RM value defined by the Bate-Smith equa-
tion15:

RM = log[(1/Rf) – 1] (1)

where Rf is the so-called retardation factor, defined as the
ratio of the single zone distance and the solvent front. The
value of RM depends linearly on the logarithm of the con-
centration of the organic modifier in the mobile phase (ϕ)
according to the following relation:

RM = RM
0 + S · ϕ (2)

where RM
0 is the intercept and S is the slope. In this pa-

per, RM
0 factors of 1,2-O-cyclohexylidene xylofuranose

derivatives, obtained by normal-phase (NP) TLC in four
diferent mobile phases, were correlated with several mo-
lecular descriptors. For the QSRR models it is very im-
portant to select most suitable molecular descriptors for
predicting retention. Hence, PCA was performed on mo-
lecular descriptors and retention factors (RM

0) to reveal
some similarities among studied compounds and to se-
lect adequate descriptors. HCA has been carried out in
order to confirm the grouping of compounds already ob-
tained by the PCA. Descriptors of analyzed molecules
were calculated using suitable software for molecular
design. Two molecular descriptors as independent va-
riables, that have low value of intercorrelation coeffi-
cient, were used for constructing each statistically valid
MLR model. 

The objectives of the conducted QSRR analysis we-
re to evaluate the retention data by multivariate statistical
methods and to find the possible relationship between re-
tention characteristics and the physicochemical parame-
ters of the investigated 1,2-O-cyclohexylidene xylofura-
nose derivatives in order to understand the separation
mechanism in the given chromatographic systems.

2. Materials and Methods

The QSRR analysis was performed in the following
several steps: molecular structure optimization by compu-
ter software, molecular descriptors computation, molecu-
lar descriptors selection, structure-retention model gene-
ration using MLR method, and statistical validation.

2. 1. Thin-Layer Chromatography

The procedure of the TLC separation of the studied
molecules and obtained retention parameters (RM

0) are
presented in literature.9 For QSRR analysis RM

0 values,
obtained by using four different mobile phases (cyclohe-
xane as diluent; ethyl acetate (EA), acetone (AC), dioxane
(DI), and tetrahydrofuran (THF) as modifiers; ϕ = 0.3 for
all modifiers) and silica gel as stationary phase, were cho-
sen.

2. 2. Studied Compounds

The names of the compounds investigated are listed
in Table 1, and their chemical structures are presented in
Figure 1. 

2. 3. Molecular Modeling and in silico
Molecular Descriptors
The derivation of in silico molecular descriptors

proceeds from the chemical structure of the compounds.
In order to calculate the molecular descriptors, all mole-
cules were drawn into ChemBioDraw Ultra version 12.0
program.22 The 3D modeling of examined molecules was
carried out using ChemBio3D Ultra version 12.0 softwa-
re22 running on AMD Sempron Processor 3000+. The ob-
tained 3D models were subjected to energy minimization
using molecular mechanics force field method (MM2).
The cutoff for structure optimization was set at a gradient
of 0.1 kcal/Åmol. The Austin Model 1 (AM1) was used
for full geometry optimization of all structures until the
root mean square (RMS) gradient reached a value smaller
than 0.0001 kcal/Åmol using MOPAC.23

The values of molecular descriptors (Table 2) for
each molecule in the data set were calculated using the

Table 1. The names of the examined molecules

No. Name
1 1,2-O-cyclohexylidene-α-D-xylofuranose

2 1,2-O-cyclohexylidene-3-O-p-toluenesulfonyl- α-D-xylofuranose

3 1,2-O-cyclohexylidene-5-O-p-toluenesulfonyl- α-D-xylofuranose

4 1,2-O-cyclohexylidene-3,5-di-O-p-toluenesulfonyl-α-D-xylofuranose

5 5-O-benzoyl-1,2-O-cyclohexylidene-α-D-xylofuranose

6 5-O-benzoyl-1,2-O-cyclohexylidene-3-O-p-toluenesulfonyl-α-D-xylofuranose

7 3,5-di-O-acetyl-1,2-O-cyclohexylidene-α-D-xylofuranose

8 1,2-O-cyclohexylidene-3,5-di-O-methanesulfonyl-α-D-xylofuranose
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software ChemBio3D Ultra version 12.0, ALOGPS 2.1,24

and MarvinSketch version 5.7.25 Determined descriptors
of examined compounds were topological descriptors
(Wiener index – WI, molecular topological index – MTI),
physicochemical descriptors (boiling point – BP, melting

point – MP, critical pressure – CP, critical temperature –
CT, critical volume – CV, ideal gas thermal capacity –
IGTC, Gibbs energy distribution – GE, partition coeffi-
cients for n-octanol/water bi-phase system – logPChDr,
AlogP, AClogP), molecular bulkiness descriptors (molar

Table 2. The values of the molecular descriptors for eight 1,2-O-cyclohexylidene xylofuranose derivatives

Molecule MR TE MTI PSA vdWSA GE BP CP CT
[[cm3/mol]] [[kcal/mol]] [[Å2]] [[Å2]] [[kJ/mol]] [[K]] [[bar]] [[K]]

1 53.904 35.8094 2910 68.15 345.81 –377.32 627.848 36.820 801.525

2 91.847 41.5998 11808 91.29 551.70 –183.78 695.952 20.493 881.346

3 91.847 44.9932 13152 91.29 552.24 –183.78 692.201 20.493 876.595

4 129.790 49.1641 29962 114.43 759.63 9.76 760.305 13.033 955.980

5 83.229 58.5437 10654 74.22 484.93 –379.52 706.325 23.203 890.495

6 121.171 65.1244 25736 97.36 691.26 –185.98 774.429 14.381 969.920

7 72.207 53.8738 7252 80.29 473.46 –690.74 643.453 20.549 831.291

8 79.702 47.1155 9146 114.43 542.19 –296.84 589.667 19.753 792.319

Molecule CV IGTC MP WI logPChDr AlogP AClogP
[[cm3/mol]] [[J/mol · K]] [[K]]

1 587.5 252.742 469.74 413 0.582 0.120 0.190

2 870.5 357.302 548.98 1625 2.797 2.170 1.510

3 870.5 357.302 548.98 1805 2.800 2.170 1.510

4 1153.5 461.862 628.22 4057 5.010 4.220 2.830

5 878.5 356.282 556.56 1469 2.710 2.170 2.150

6 1161.5 460.842 635.80 3497 4.920 4.210 3.480

7 825.5 350.260 477.84 1049 1.040 0.880 1.160

8 697.5 302.716 415.10 1311 –0.330 0.090 –0.540

Figure 1. The chemical structures of the derivatives investigated 
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refractivity – MR, total energy – TE, van der Waals surfa-
ce area – vdWSA), and polarity descriptor (polar surface
area – PSA). 

2. 4. Multivariate Statistical Analysis and
Model Validation
In QSRR analysis the main problem is how to redu-

ce the number of variables and how to detect structure in
the relationships between variables, that is to classify va-
riables.26 This can be done by various statistical methods
of explorative analysis, classification methods and regres-
sion methods.26,27 PCA and HCA are most often used ex-
plorative statistical methods.26,28 Also, MLR is the most
widely used regression method in QSRR.15

PCA is a technique for reducing the amount of data
when there is correlation present. It is worth stressing that
it is not a useful technique if the variables are uncorrela-
ted.29 PCA calculates latent, new variables by a combina-
tion of the original variables, representing the multidi-
mensional data structure in an optimal way.30 In a multidi-
mensional space, where the variables define the axes, the
data are projected into a few principal components (PCs)
that are linear combinations of the original variables and
describe the maximum variation within the data. Each PC
is characterized by scores and loadings. Scores are the
new coordinates of the projected objects, and loadings ref-
lect the direction with respect to the original variables.19

The loadings plot displays relationships between variables
and can be used to identify variables (molecular descrip-
tors in this study) which contribute to the positioning of
the objects on the scores plot. The scores plot provides a
data overview displaying patterns or groupings within the
data.

HCA is a method for dividing a group of objects in-
to classes so that similar objects are in the same class
(cluster). As in PCA, the groups are not known prior to
the mathematical analysis and no assumptions are made
about the distribution of the variables. Cluster analysis
searches for objects which are close together in the va-
riable space. The data in each cluster share some com-
mon trait, often proximity according to some defined di-
stance measure.26

The general purpose of MLR analysis is to quantita-
te the relationship between several independent or pre-
dictor variables and a dependent variable.12 MLR model
is built with descriptive variables using the least squares
methods to minimize the residuals.19 General MLR mo-
del is:

y = a + b1 · x1 + b2 · x2 +···+ bn · xn (3)

where y is the quantitative property to predict (dependent
variable), xn an independent (descriptive) variable, a the
intercept, and bn the regression coefficient for xn. The
main restriction of MLR analysis is the case of large des-
criptors-to-compounds ratio or multicollinear descriptors

in general.27 For construction of MLR models it is very
important to avoid multicollinearity. Variance Inflation
Factor (VIF) is a diagnostic tool used to check the impact
of multicollinearity in the MLR models. The VIF was cal-
culated for indepenedent variables in each established
MLR model according to equation31,32:

VIFi = (1 – Ri
2)–1 (4)

where Ri
2 is the coefficient of determination in a regres-

sion of the xi independent variable on all other indepene-
dent variables in MLR model. The literature suggests that
VIF greater than 10 indicates multicollinearity.32–36

Model validation is very important aspect of any
QSRR analysis. The statistical quality of the generated
MLR equations was measured by use of the standard sta-
tistical parameters (Pearson’s correlation coefficient (r),
F-test (Fisher’s value), and the standard error of estima-
tion (s)), and cross-validation parameters (cross-valida-
ted coefficient of determination (r2

cv), adjusted coeffi-
cient of determination (r2

adj), predicted residual sum of
squares (PRESS), total sum of squares (TSS), and stan-
dard deviation based on predicted residual sum of squa-
res (SPRESS)).

37,38 The correlation coefficient values closer
to 1.0 represent the better fit of the regression, and high
values of the F-test indicate that the model is statistically
significant.38 Standard deviation expresses the variation
of the residuals or the variation about the regression line,
and should have a low value for the regression to be sig-
nificant.37,38 The lower PRESS value is, the better the pre-
dictability of the model.17,39 If PRESS value is less than
TSS value, the model predicts better and can be conside-
red statistically significant. TSS values are in terms of the
dependent variable y. In many cases, r2

cv and r2
adj are ta-

ken as a proof of the high predictive ability of estimated
mathematical models in QSRR. High values of these sta-
tistical characteristics (r2

cv, r
2

adj > 0.5) indicate high pre-
dictivity of the equations.31 Unlike r2, r2

cv may be negati-
ve, indicative of a very poor mathematical model, also
unlike r2, which tends to increase upon the addition of
any descriptor, r2

cv will decrease upon the addition of ir-
relevant descriptors.40

3. Results and Discussion

3. 1. PCA
In order to overview the data for similarities and dis-

similarities, PCA has been carried out on the set of calcu-
lated molecular descriptors and retention data using Stati-
stica v. 8 software.41 Therefore, PCA can cluster com-
pounds based on their structural and chromatographic fea-
tures.

PCA was first performed on chromatographic data
(RM

0 values) and resulted in a two-component model that
explains 99.44% of the data variation. The first principal
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component explains up to 73.09% of the variability, and
the second accounts for up to 26.35%. Figure 2 shows
score values and the mutual projections of the loading
vectors for the first two PCs.

The loading graph indicates the highest negative im-
pact of systems with tetrahydrofuran, dioxane, and ethyl
acetate along the PC1 direction, and acetone along the
PC2 direction. The obtained results show that PC1 separa-
te examined compounds according to their retention
which is caused by the polarity and solubility of the sub-
stituents in applied mobile phases.9 Along the PC1 direc-
tion, retention of the examined compounds decreases.
Loading plot highlights the most influential chromato-
graphic systems responsible for such retention order. In
this case the loading graph does not reveal any significant
influence of the mobile-phase composition along the PC2
direction.

The PCA performed on descriptors resulted in a
three-component model that explains 98.33% of total va-
riance. It reveals a quite different classification of com-
pounds. First PC comprises 79.72% of the total data varia-
bility, and the second 11.35%. Scores graph (Figure 3a)
revealed that the classification of examined molecules
was achieved based on the structural characteristic: the
presence of the voluminous aromatic substituents (p-to-
luenesulfonyl and benzoyl groups). Going along the PC1
axis from its negative end towards positive values, com-
pounds which contain two aromatic substituents (4 and 6)
are positioned very close to each other, and well separated
from the rest of the compounds. Compounds 2, 3 and 5
contain one aromatic substituent, and compounds 7 and 8
have two small non-aromatic substituents (acetyl and met-
hanesulfonyl groups). Compound 1 is unsubstituted and is
positioned at the positive end of the PC1 axis. 

a) b)

Figure 2. Score values (a) and factor loadings (b) of retention parameters for the first two PCs.

a) b)

Figure 3. Score values (a) and factor loadings (b) of molecular descriptors for the first two PCs.
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As it can be seen from the loading graph (Figure
3b), the majority of descriptors have a significant negative
impact on PC1, while only CP has a positive influence.
On the basis of the obtained plots (Figure 3) and molecu-
lar structures (Figure 1) of analyzed compounds, it can be
concluded that the molecular volume is discriminating
factor between compounds, because the majority of the
calculated molecular descriptors mainly depends on mole-
cular volume (molecular size).42–45

3. 2. HCA

HCA has been performed using NCSS 2007 and
GESS 2006 Statistical Software46 in order to confirm the
grouping of compounds already obtained by the PCA.
Clustering is based on the Euclidean distance and Ward’s
linkage algorithm. 

As it can be observed from Figure 4a, dendogram
based on the retention parameters shows two well-separa-
ted clusters and compound 1 out of clusters. Clustering of
the compounds on the obtained dendogram is based on
their retention characteristics and it is the same as on the
PC1-PC2 score plot (Figure 2a).

The cluster analysis performed on descriptors resul-
ted in two main clusters (Figure 4b). The first cluster is
made of compounds 4 and 6, that have two aromatic sub-
stituents, while the second cluster with substructures con-
tains unsubstituted compound 1, and compounds with one
aromatic substituent (2, 3 and 5) and two non-aromatic
substituents (7 and 8). It is obvious that compounds in
HCA are grouped in the same way as in PCA (Figure 3a).

3. 3. MLR

MLR analysis has been carried out to derive the best
QSRR models which can predict retention behavior of in-

re obtained (Table 4). The statistical validity of the estab-
lished models, as depicted in Table 4, was determined by
r, F, and s. The F-value is found statistically significant at
99% level since all the calculated F values are higher as
compared to tabulated values. 

Positive values in regression coefficient indicate that
observed descriptor contributes positively to the value of
RM

0, whereas negative values indicate that the greater the va-
lue of descriptor, the lower the value of RM

0. Based on the

Table 3. Correlation matrix for molecular descriptors used in MLR

analysis

CP TE GE IGTC PSA
CP 1

TE –0.6097 1

GE –0.4380 –0.0840 1

IGTC –0.8648 0.6618 0.5280 1

PSA –0.7534 0.1294 0.6193 0.5033 1

vestigated molecules based on selected molecular descrip-
tors. It is very important to define the number of indepen-
dent variables in the model equation, because in this way
the over-parameterization of the mathematical model as
well as the chance correlation between the descriptors is
avoided.47 In this study as independent variables two des-
criptors were selected according to number of molecules
investigated. The stepwise regression routine showed
which two-descriptor combinations form the MLR mo-
dels characterized by the highest correlation coefficient.

The software package used for conducting MLR
analysis was NCSS 2007 and GESS 2006. The descriptors
obtained by stepwise regression routine served as the in-
put data for MLR analysis. The correlation coefficients
among selected descriptors are presented in Table 3.

As a result of MLR analysis, three statistically signi-
ficant equations, free of multicollinearity (VIF < 10), we-

a) b)

Figure 4. Dendograms of 8 examined compounds in the space of 4 chromatographic systems (a) and 16 molecular descriptors (b).
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chosen descriptors and formed MLR models, it can be ob-
served that retention of derivatives examined by adsorption
chromatography is best described by physicochemical (ther-
modynamic) descriptors (CP, GE, IGTC) and molecular bul-
kiness descriptor (TE), including polarity parameter (PSA). 

Equations 5–7 were cross-validated by the leave-
one-out (LOO) method (Table 5). High values of r2

cv and
r2

adj, and low PRESS value (significantly less than the
TSS), were obtained for all the models, indicating that the-
se models have outstanding predictive power. 

To confirm our finding, RM
0 values were calculated

from the established models 5–7, and graphically compa-
red with experimental data (Figure 5). Low scattering of
points around the linear relationship, significant slope
(>0.95), and intercept close to zero (<0.0407), indicate
very good concurrence between experimental values of
retention parameters and values obtained by defined mat-
hematical models. 

Also, on the basis of the magnitude of the residues
there is close agreement between observed and calculated
retention constants (Figure 6).

Table 5. Cross-validation parameters for models 5–7

Eq. r2
cv r2

adj PRESS TSS PRESS/TSS SPRESS

5 0.9417 0.9707 0.0586 1.0042 0.0584 0.0856

6 0.9658 0.9800 0.0343 1.0042 0.0342 0.0655

7 0.8719 0.9413 0.0871 0.6801 0.1281 0.1043

Table 4. Best MLR models for prediction of retention behavior of 1,2-O-cyclohexylidene xylofuranose derivatives

Modifier Variables Multiple Linear Regression: y = a · x1 + b · x2 + c Eq.
y x1 x2 a b c r F s VIF

EA RM
0 CP TE 0.0391 –0.0137 –1.1295 0.9895 116.90 0.0648 1.6 (5)

EA RM
0 CP PSA 0.0669 0.0095 –3.2617 0.9928 172.18 0.0536 2.3 (6)

THF RM
0 GE IGTC 0.0008 –0.0050 0.6460 0.9788 57.10 0.0755 1.4 (7)

Figure 5. Graphs of experimental vs. predicted RM
0 values accor-

ding to equations 5–7.

Figure 6. Plot of the residual values against the experimentally ob-

served RM
0 values for each molecule.
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The presented results indicate that MLR analysis
combined with a successful variable-selection procedure
enables forming of efficient QSRR models for predicting
the retention constants of 1,2-O-cyclohexylidene xylofu-
ranose derivatives. All these results suggest that the chro-
matographic behavior of examined molecules depends on
molecular descriptors, and the retention constants can be
accurately predicted. 

4. Conclusion

In this study the focus of QSRR analysis was to iden-
tify the most important descriptors affecting normal-phase
chromatographic behavior of 1,2-O-cyclohexylidene xylo-
furanose derivatives on silica gel thin layer. For this purpo-
se PCA and HCA followed by MLR were performed. The-
se multivariate statistical methods revealed that analytes
can be classified according to their structural characteri-
stics. Established MLR models are statistically significant
and free of relevant multicollinearity. CP, TE, GE, IGTC,
and PSA are most appropriate molecular descriptors for
prediction of the chromatographic retention constant RM

0.
The best statistical results were obtained with ethyl acetate
as the modifier. Predictive ability of formed mathematical
models based on physically meaningful molecular parame-
ters allows us to estimate and understand retention beha-
vior of structurally similar compounds.
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Povzetek
QSRR metoda je bila uporabljena s ciljem ugotavljanja odnosa med retencijskim obna{anjem in molekularnimi zna~il-

nostmi osmih derivatov 1,2-O-cikloheksiliden ksilofuranoze. QSRR analiza retencijskega parametra RM
0, ki je bil eks-

perimentalno pridobljen s tankoslojno kromatografijo, je bila izvedena z uporabo molekularnih deskriptorjev in particij-

skega koeficienta (logP). Fizikalno-kemi~ne deskriptorje smo izra~unali iz optimiranih struktur. Metoda glavnih osi,

metoda hierarhi~nega razvr{~anja in postopek multiple linearne regresije so bili uporabljeni za dolo~anje molekularnih

deskriptorjev, ki najbolje opisujejo retencijske lastnosti raziskanih spojin, ter za dolo~anje podobnosti med molekulami.

Dobljene so ena~be, ki predstavljajo retencijski parameter RM
0 v funkciji in silico molekularnih deskriptorjev in parame-

trov lipofilnosti. Kakovost dobljenih matemati~nih modelov je bila dolo~ena s standardnimi statisti~nimi analizami in

navzkri`no validacijo parametrov. Rezultati dokazujejo, da so omenjeni matemati~ni modeli statisti~no zna~ilni, ter da

lahko uspe{no napovedujejo retencijsko obna{anje raziskovanih derivatov ksilofuranoze.


