Scientific paper

C_6F_5XeY Molecules (Y = F and Cl): New Synthetic Approaches. First Structural Proof of the Organoxenon Halide Molecule C_6F_5XeF

Vural Bilir¹ and Hermann-Josef Frohn^{2,*}

¹ Universität Duisburg-Essen, Anorganische Chemie, Lotharstr. 1, 47048 Duisburg

² Universität Duisburg-Essen, Anorganische Chemie, Lotharstr. 1, 47048 Duisburg

* Corresponding author: E-mail: h-j.frohn@uni-due.de

Received: 28-06-2012

Dedicated to Professor Boris Žemva

Abstract

The arylxenonium salt $[C_6F_5Xe][BF_4]$ reacts with different sources of nucleophiles, Y (naked fluoride, $[N(CH_3)_4]F$, the silanes, $(CH_3)_3SiCl$ and $(C_2H_5)_3SiH$, and the cadmiumorganyl, $Cd(C_6F_5)_2$), in coordinating solvents $(C_2H_5CN, CH_3CN, CD_3CN)$. While the products C_6F_5XeF , C_6F_5XeCl , and $(C_6F_5)_2Xe$ are well defined molecules, in reactions with $(C_2H_5)_3SiH$ only decomposition products presumably derived from $<C_6F_5XeH>$ and $<C_6F_5XeC_2H_5>$ are found. Molecular parameters and intermolecular contacts in the single crystal X-ray structure of C_6F_5XeF are discussed.

Keywords: Arylxenonium tetrafluoroborate, organylxenon molecules, reactions with nucleophiles in coordinating solvents, pentafluorophenylxenon fluoride crystal structure

1. Introduction

The chemistry of organylxenonium salts [RXe][Z] is comprehensively treated in several reviews.¹ The majority of available information concerns the salt [C₆F₅Xe][BF₄] with an electrophilic cation and a moderately to weakly coordinating anion. The most frequently used procedure to obtain ArXeY started from ArXeF (Ar = C₆F₅, C₆H_nF_{5-n}) which were reacted with alkylsilanes, Alk₃SiY, (Y = Cl,^{2,3} Br, NCO², CN,^{2,3,4,5} CF₃C(O)O, CF₃S(O)₂O,² C₆F₅,^{2,3,4,5} 2,6-C₆H₃F₂²) in the weakly coordinating solvent CH₂Cl₂. The strong Si–F bond of the co-product was the driving force (Eq 1).

$$CH_2Cl_2/-78 \ ^{\circ}C$$

$$ArXeF + Alk_3SiF \longrightarrow ArXeY + Alk_3SiF \qquad (1)$$

Thus, ArXeF can be regarded as a key substrate in the syntheses of ArXeY molecules. It was prepared by two routes: (a) the F⁻ catalyzed F/Ar substitution with Me_3SiAr in XeF₂⁶ (the product contained an admixture of $(C_6F_5)_2Xe$) and (b) in the very slow surface reaction of $[ArXe]^+$ salts with $[N(CH_3)_4]F$ in CH_2Cl_2 .⁴

In the current work we offer a useful modification of route (b) and a fast homogeneous synthesis of C_6F_5XeF . Furthermore, we investigate the direct reaction of $[C_6F_5Xe][BF_4]$ with Alk₃SiY (Y = Cl, H) to C_6F_5XeY molecules. In case of Y = Cl, we discuss the results which differ from that obtained previously with $[C_6F_5Xe][AsF_6]$.⁷ Furthermore, it will be shown that the electrophilic cation of $[C_6F_5Xe][BF_4]$ can directly interact with the carbon nucleophile of the organometallic compound, $Cd(C_6F_5)_2$.

2. Results and Discussion

2. 1. Synthesis of C₆F₅XeF

In 2000, we reported the surface reaction of insoluble $[C_6F_5Xe][AsF_6]$ with equimolar amounts of dissolved $[N(CH_3)_4]F$ in CH_2Cl_2 at -78 °C.⁴ That reaction required more than 2 days for complete conversion and was accompanied by the partial decomposition of the product, C_6F_5XeF . A modified reaction using 1.5 equiv of $[N(CH_3)_4]F$ in CH_2Cl_2 is described in the present work. The excess of $[N(CH_3)_4]F$ can act as a HF scavenger. Finally, *n*-pentane was added to reduce the density of the

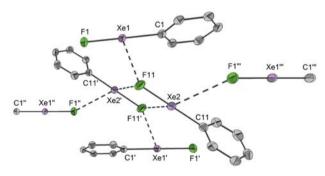
solvent and to precipitate all $[N(CH_3)_4]^+$ salts. After distilling off the solvent mixture from C_6F_5XeF , the latter remained as a white powder (66% yield) which was dissolved in CH_2Cl_2 at -50 °C. Crystals suitable for single crystal X-ray structural determination having a plate morphology with right angles were obtained by a very slow partial removal of the solvent under vacuum.

An alternative fast synthesis of C_6F_5XeF started from a cold (-78 °C) C_2H_5CN solution of $[C_6F_5Xe][BF_4]$ which was added to a cold (-78 °C) CH_2Cl_2 solution of $[N(CH_3)_4]F$. Monitoring the reaction after 20 min revealed the total conversion of the xenonium salt with the formation of C_6F_5XeF (95%), C_6F_5H (5%), and traces of C_6F_6 (Eq 2).

$$[C_6F_5Xe][BF_4]/C_2H_5CN + [N(CH_3)_4]F/CH_2Cl_2$$

$$\xrightarrow{-78 \,^{\circ}C} \qquad (2)$$

$$\xrightarrow{-78 \,^{\circ}C} \qquad (2)$$


2. 2. The Molecular Structure of C₆F₅XeF and Important Intermolecular Contacts in the Solid State Structure

The compound, C_6F_5XeF crystallizes in the monoclinic space group $P2_1/n$ (a = 12.2038(3) Å, b = 9.9596(3) Å, c = 13.0904(4) Å, β = 101.140(1)°) with eight molecules in the unit cell and two molecules in the asymmetric unit. The crystallographic data are given in Table 1. The molecular parameters of both molecules are similar and mainly differentiated by their intermolecular contacts. The C-Xe-F arrangement of C_6F_5XeF is linear with a C1-Xe1-F1 angle in molecule 1 of 178.67(6)° (the analogous angle in molecule 2: 179.46(7)°). The Xe-C distance in molecule 1 is 2.132(2) Å (2.128(2) Å in molecule 2) and is longer than in the xenonium cations of $[C_6F_5Xe][AsF_6]$ (2.079(5))and 2.082(6)Å),⁸ $[C_6F_5Xe][B(CN)_4]$ (2.081(3) Å),⁹ $[C_6F_5Xe][B(CF_3)_4]$ (2.104(5) Å),⁹ in the acetonitrile adducts of the xenonium cation in $[C_6F_5Xe \cdot NCCH_3]$ $[B(CF_3)_4]$ (2.100(6) Å) and $[C_6F_5Xe \cdot NCCH_3][B(C_6F_5)_4]$ (2.100(10) Å),⁹ and only slightly longer than in $C_6F_5XeOC(O)C_6F_5$ (2.122(4) Å).¹⁰ On the other hand, the Xe-F distance in C₆F₅XeF (2.172(1) Å (molecule 1) and 2.182(1) Å (molecule 2)) is significantly shorter than the Xe-F cation-F contacts (F from the counterion) in $[C_6F_5Xe][AsF_6]$ (2.714(5) and 2.672(5) Å),⁸ $[C_6F_5Xe][B(CF_3)_4]$ (2.913(4) Å).⁹ Thus, bonding in the C-Xe-F fragment is best described as an asymmetrical hypervalent bond. The C-Xe distance is shorter than in $(C_6F_5)_2$ Xe (2.394(9) and 2.35(1) Å)¹¹ and the Xe-F distance longer than in XeF₂ (2.00(1) Å.¹² In addition to arguments based on experimental distances, the asymmetry is also supported by the partial charges on the C₆F₅ group and F ("Natural Population Analysis" charges (DFT method SVWN, basis set SDD): C₆F₅ -0.33 e⁻, F

-0.64 e⁻, Xe 0.97 e⁻; (RHF method, basis set LANL2DZ): C_6F_5 –0.37 e⁻, F –0.77 e⁻, Xe 1.13 e⁻. The calculated gas phase structure depends on the applied method and basis set. Using the DFT method SVWN and the basis set SDD the C-Xe distance is overestimated (2.18 Å) and the Xe-F distance underestimated (2.08 Å) when compared with the solid state experimental parameters. With the RHF method and the basis set LANL2DZ, the C-Xe distance was 2.20 Å (overestimated) and Xe-F distance was 2.13 Å (underestimated). In comparison with the symmetrical parent molecules (values from the [DFT method, SVWN and basis set SDD] and the {RHF method and basis set LANL2DZ} XeF₂ [Xe-F 2.03 Å, Xe 1.10 e⁻, F –0.55 e⁻], {Xe-F 2.03 Å, Xe 1.33 e⁻, F -0.67 e⁻} and (C₆F₅)₂Xe [Xe-C 2.30 Å, Xe 0.81 e⁻, C₆F₅ –0.40 e⁻], {Xe-C 2.34 Å, Xe 0.98 e^- , $C_6F_5 - 0.49 \text{ e}^-$ }, the molecule C_6F_5 XeF can also be described as a close ion pair. The distribution of partial charges allows also to interpret the observed intermolecular interactions of C₆F₅XeF in the solid state: Xe-bonded fluorine and Xe^{II} interact in a donor acceptor manner. Two symmetry equivalent molecules 2 are arranged head to tail in a side-on mode and form a Xe2-F11-Xe2'-F11' parallelogram (Figure 1). In addition, each Xe2 of the parallelogram acts as acceptor of F1 and each F11 of the parallelogram as donor to Xe1. It is worth stressing, that the donor property of F11, which donates to two Xe^{II}, namely Xe1 and Xe2', leads to one shorter contact than in the single contact of F1" to Xe2.

2. 3. Synthesis of C₆F₅XeCl

In 1999, we investigated the conversion of $[C_6F_5Xe][AsF_6]$ into $C_6F_5XeCl.^7$ We were only successful when insoluble $[C_6F_5Xe][AsF_6]$ was reacted with soluble

Figure 1. The molecular structure of C_6F_5XeF (fluorine atoms of the C_6F_5 group are not depicted) showing the most significant intermolecular contacts. The thermal ellipsoids are drawn at the 50% probability level.

Selected distances / Å and angles / °: Xe1–C1 2.132(2), Xe1–F1 2.172(1), C1–Xe1–F1 178.67(6), Xe2–C11 2.128(2), Xe2–F11 2.182(1), C11–Xe2–F11 179.46(7).

Significant intermolecular contacts / Å and angles / °: Xe1–F11 3.036(1), Xe2–F1'' 3.261(1), Xe2–F11' 3.288(1), F11-Xe2–F11' 78.65(4), Xe2-F11–Xe2' 101.35(5), Xe2-F11–Xe1 146.97(6), Xe2'–F11–Xe1 90.95(4), F1-Xe1–F11 108.06(4), C1-Xe1–F11 72.38(6)

Bilir and Frohn: C_6F_5XeY Molecules (Y = F and Cl): New Synthetic ...

Compound	C ₆ F ₅ XeF
Empirical formula	C_6F_6Xe
Crystal size	$0.32 \text{ mm} \times 0.26 \text{ mm} \times 0.16 \text{ mm}$
Crystal system	Monoclinic
Space group	$P2_{I}/n$
Unit cell dimensions	a = 12.2038(3) Å
	b = 9.9596(3) Å
	c = 13.0904(4) Å
	$\beta = 101.140(1)^{\circ}$
Volume	1561.09(8)Å ³
Z (molecules/unit cell)	8
Density (calculated)	2.701 g cm^{-3}
Temperature	173 ± 2 K
Radiation	Mo K _{α} ($\lambda = 0,71073$ Å)
<i>F</i> (000)	1152
Theta range for data collection	2.09–30.46 °
Final R indices	$R_1 = 0.0180, wR_2 = 0.0431$
	1 2

Table 1. Crystallographic and refinement data for C₆F₅XeF

4-ClC₅H₄N · HCl in weakly coordinating CH₂Cl₂ at −78 °C. When CH₃CN solutions of [C₆F₅Xe][AsF₆] and [N(CH₃)₄]Cl were combined at ≤ −20 °C, no reaction proceeded and at 0 °C, C₆F₅Cl was formed along with Xe⁰. When (CH₃)₃SiCl was used as a source of chlorine in CH₂Cl₂ at −78 °C, 3 equiv of the silane were required for the total conversion of [C₆F₅Xe][AsF₆]. Instead of C₆F₅XeCl, the salt with the chlorine bridged bis(pentafluorophenylxenonium) cation, [(C₆F₅Xe)₂Cl][AsF₆], was isolated and established from its crystal structure.⁷ Under these conditions, the [AsF₆]⁻ anion also underwent F/Cl substitution followed by the elimination of chlorine from the proposed intermediate, AsCl₅ (Eq 3).

$$2 [C_6F_5Xe][AsF_6] + 6 (CH_3)_3SiCl \xrightarrow{CH_2Cl_2/-78 \circ C}$$
(3)

 $[(C_6F_5Xe)_2Cl][AsF_6] + 6 (CH_3)_3SiF + AsCl_3 + Cl_2$

In contrast to Eq 3, the presence of CH_3CN avoided F/Cl substitution on AsF_5 (Eq 4).

$$2 [C_6F_5Xe][AsF_6] + (CH_3)_3SiCl + CH_3CN \xrightarrow{CH_2Cl_2/-78 \,^\circ C} \longrightarrow$$

$$[(C_6F_5Xe)_2Cl][AsF_6] + (CH_3)_3SiF + AsF_5 \cdot NCCH_3 \qquad (4)$$

In the present work, we report a different mode of reactivity for $[C_6F_5Xe][BF_4]$ with $(CH_3)_3SiCl$. In CH_2Cl_2 at -40 °C (heterogeneous reaction), only 8% conversion into soluble C_6F_5XeCl occurred within 3 h (Eq 5), whereas in the homogenous reaction in CH_3CN at -40 °C the total conversion took place in less than 20 min (Eq 6). In C_2H_5CN solution at -78 °C, only a slow reaction was ob-

$$[C_{6}F_{5}Xe][BF_{4}] + (CH_{3})_{3}SiCl \xrightarrow{CH_{2}Cl_{2}/-40 \text{ °C}} (5)$$
8% conversion/3 h
$$C_{6}F_{5}XeCl + BF_{3} + (CH_{3})_{3}SiF$$

	CH ₃ CN/-40 °C	
$[C_6F_5Xe][BF_4] + (CH_3)_3SiCl$ 100% conversion/ ≤ 20 min	\longrightarrow	(6)

$$C_6F_5XeCl + BF_3 \cdot NCCH_3 + (CH_3)_3SiF$$

served, but at -55 °C the conversion proceeded in less than 5 min.

Eqs 5 and 6 show that the $[BF_4]^-$ anion was involved in the reaction with (CH₂)₂SiCl and that another Xe^{II} product resulted that differs from that formed in the presence of the $[AsF_6]^-$ anion. To elucidate the interaction of the $[BF_4]^-$ anion with $(CH_3)_3SiCl$, the reaction of $[N(n-C_4H_0)_4][BF_4]$ with $(CH_3)_3$ SiCl was investigated at 20 °C in CH₃CN and only 17% conversion of $[BF_4]^-$ to [BClF₂]⁻ within 1.5 h was found. That result underlines the participation of the electrophilic $[C_6F_5Xe]^+$ cation in F/Cl-substitution (Eq 6) in the presence of CH₃CN. It was reported that the $[BF_4]^-$ anion was also involved in the very slow reaction (4 d) of $[2,6-C_6H_3F_2Xe][BF_4]$ with (CH₃)₃SiOSO₂CF₃ in a CH₃CN/CH₂Cl₂ mixture at -20 °C.¹³ A forthcoming paper will exemplify the general character of the participation of electrophilic cations of tetrafluoroborate salts in nucleophilic substitution reactions.

2. 4. The Reaction of [C₆F₅Xe][BF₄] with (C₂H₅)₃SiH in CD₃CN and C₂H₅CN Solutions

The reaction of $[C_6F_5Xe][BF_4]$ with $(C_2H_5)_3SiH$ in CD₃CN at -40 °C proceeded almost quantitatively within 20 min. The $[BF_4]^-$ anion was converted into BF_3 . NCCD₃. C_6F_5H resulted as the main product (61%) besides traces of C_6F_5D (2%) only. Over and above that, five C_6F_5 compounds were formed: $(C_6F_5)_2Xe$ (5%), $(C_6F_5)_2$ (1%), C₆F₅CH₂CH₃ (5%), C₆F₅Si(C₂H₅)₃ (2%), and $[C_6F_5C(CD_3) = N(H,D)_2]^+$ (19%) The above products and their molar ratio allow some reasonable conclusions. (a) C₆F₅H can result from the short living (not NMR spectroscopically proven) compound C₆F₅XeH by Xe⁰ elimination or, as the in cage product of $C_6F_5^{\bullet}$ and H^{\bullet} radical combination, after oxidation of H⁻ by [C₆F₅Xe]⁺ and subsequent Xe^0 elimination from the $[C_6F_5Xe]$ radical. Abstraction of deuterium by $C_6F_5^{\bullet}$ (out of cage) proceeded only by a minor route. (b) $(C_6F_5)_2Xe$, $(C_6F_5)_2$, and $C_6F_5C_2H_5$ may result from the intermediate $\langle C_6F_5XeC_2H_5 \rangle$: $(C_6F_5)_2Xe$ as one product of the equilibration, $C_6F_5C_2H_5$ by the direct elimination of Xe^0 from $C_6F_5XeC_2H_5$ and $(C_6F_5)_2$ by Xe^0 elimination from $(C_6F_5)_2Xe$. The latter route is described in the literature.⁴ (c) The formation of large amounts of $[C_6F_5C(CD_3)=$ $N(H,D)_2]^+$ presumably results from the addition of $C_6F_5^$ radicals to the C-N triple bond of the solvent, followed by H or D scavenging and $(H,D)^+$ addition to the imino nitrogen atom). The high-frequently *p*-fluorine resonance (-141.5 ppm) is a strong indicator of the cationic nature. The ¹⁹F NMR shift values are in good agreement with that of the only related structure in the literature $[C_6F_5C(CH_3) = N(C_2H_5)_2]Br.^{14} A Xe-C$ structure can be rejected despite the high-frequently *p*-F resonance, which is typical for Xe-C_6F_5 cations, because neither a ¹²⁹Xe resonance nor ¹²⁹Xe satellites in ¹⁹F signals were found nor did the compound decompose after heating to 20 °C for 1 h.

When the reaction of $[C_6F_5Xe][BF_4]$ with $(C_2H_5)_3SiH$ was performed in C_2H_5CN solution at -90 °C, a similar mixture of products resulted, but at a slower rate. The main difference derives from the C_6F_5 radical interaction with the solvent, namely the formation of the $[C_6F_5C(C_2H_5)=NH_2]^+$ cation.

Based on RHF/LANL2DZ calculations the assumed intermediate, C_6F_5XeH , should be described in the gas phase as $H-Xe-C_6F_5$ with a very weak Xe-C bond (2.54 Å) and a Xe-H bond of 1.74 Å and "Natural Population Analysis" charges of 0.80 e⁻ (Xe), -0.08 e⁻ (H), and -0.72 e⁻ (C_6F_5).

2. 5. The Reaction of [C₆F₅Xe][BF₄] with Cd(C₆F₅)₂ in C₂H₅CN Solution

When $[C_6F_5Xe][BF_4]$ was reacted with $Cd(C_6F_5)_2$ in the coordinating solvent C_2H_5CN at -78 °C the $[BF_4]^-$ anion was involved in a metathesis reaction and in contrast to reactions with Alk₃SiY, it did not serve as a source of fluoride for the acidic Cd^{II} center. $(C_6F_5)_2Xe$ was precipitated within less than 2 h along with small amounts of Cd[BF₄]₂, which could be removed by washing with cold C_2H_5CN (Eq 7).

$$2 [C_6F_5Xe][BF_4] + Cd(C_6F_5)_2 \xrightarrow{C_2H_5CN/-78 \ ^\circ C} \rightarrow 2(C_6F_5)_2Xe \downarrow + Cd[BF_4]_2$$
(7)

It is worth mentioning that $(C_6F_5)_2Xe$ was found to decompose when pressure was exerted on the solid, e.g., with a spatula, even in a C_2H_5CN suspension at -78 °C. After decomposition, $(C_6F_5)_2$ and C_6F_5H were found in the molar ratio of 83 to 17.

3. Experimental Section

3.1. General

The NMR spectra were recorded on a Bruker AVANCE 300 spectrometer (1 H at 300.13 MHz; 19 F at

282.40 MHz; ¹¹B at 96.29 MHz, ¹²⁹Xe at 83.02 MHz, and ¹³C at 75.47 MHz). The chemical shifts were referenced to TMS (¹H and ¹³C), CCl₃F (¹⁹F, with C₆F₆ as secondary reference (-162.9 ppm)), BF₃ · OEt₂/CDCl₃ (15% v/v) (¹¹B), and XeOF₄ (¹²⁹Xe, with XeF₂ in CH₃CN (extrapolated to zero concentration) as secondary external reference (-1818.3 ppm)¹⁵, respectively. The composition of the reaction mixtures was determined by ¹⁹F NMR spectroscopy using internal standards for integration.

X-ray diffraction data were collected at 173 ± 2 K using a diffractometer equipped with a Siemens SMART three axis goniometer and an APEX II area detector system. Crystal structure solution by Direct Methods and refinement on *F*2 were performed using the Bruker AXS SHELXTL software suite Version 6.12 after data reduction, and empirical absorption correction was performed using the Bruker AXS SAINT program Version 6.0. For crystallographic and refinement details see Table 1.

Crystal structure data have been deposited at the Cambridge Crystallographic Data Centre (CCDC). Enquiries for data can be directed to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, U.K., CB2 1EZ or (e-mail) deposit@ccdc.cam.ac.uk or (fax) +44 (0) 1223 336033. Any requests sent to the Cambridge Crystallographic Data Centre for this material should quote the full literature citation and the reference number CCDC 889108.

 $[C_6F_5Xe][BF_4]$ was prepared according to literature.¹⁶ CH₃CN, C_2H_5 CN, n- C_5H_{12} , and CH₂Cl₂ were purified and dried as described in ref 17. $(C_2H_5)_3$ SiH (Merck, >99%) was used as supplied. $(CH_3)_3$ SiCl (Merck, >99%) was freshly distilled and [N(n- $C_4H_9)_4[BF_4]$ (Fluka, >99%) was dried under vacuum before use. Cd $(C_6F_5)_2$ and $[N(CH_3)_4]$ F were prepared according to refs 18 and 19, respectively.

All reactions were performed in FEP (a block copolymer of tetrafluoroethylene and hexafluoropropylene) or PFA (a block copolymer of tetrafluoroethylene and perfluoroalkoxytrifluoroethylene) vessels under an atmosphere of dry argon.

3. 2. Synthesis of C₆F₅XeF in CH₂Cl₂

An excess of $[N(CH_3)_4]F$ (143.1 mg; 1.537 mmol) was partially dissolved in cold CH_2Cl_2 (10 mL; -78 °C) in an FEP trap (inner diameter = 23 mm). Solid $[C_6F_5Xe][BF_4]$ (386.4 mg; 1.003 mmol) was added and the suspension was intensively stirred for 2 d at -78 °C. Because of the lower density of the solid relative to the solution, the solid remained on the surface. *n*-Pentane (10 mL; -78 °C) was added till the solid precipitated. A sample (250 µL; -78 °C) was taken and analyzed by ¹⁹F NMR spectroscopy.

¹⁹F NMR (CH₂Cl₂/*n*-C₅H₁₂ at -80 °C) δ (ppm): -129.0 (m, ³*J*(F^{2,6}-¹²⁹Xe) = 81 Hz, 2F, *o*-C₆F₅), -146.6 (t, ³*J*(F⁴-F^{3,5}) = 20 Hz, 1F, *p*-C₆F₅), -156.2 (m, 2F, *m*-C₆F₅), -2.2 (s, $\Delta v_{1/2}$ = 153 Hz, ¹J(¹⁹F-¹²⁹Xe) = 4030 Hz, 1F, XeF), C₆F₅XeF; -139.3 (m, 2F, *o*-C₆F₅), -154.5 (t, ³J(F⁴-F^{3,5}) = 21 Hz, 1F, *p*-C₆F₅), -162.7 (m, 2F, *m*-C₆F₅), C₆F₅H; -141.3 (m, 2F, *o*-C₆F₅), -150.9 (m, 1F, *p*-C₆F₅), -161.4 (m, 2F, *m*-C₆F₅), C₆F₅Cl; molar ratio related to the sum of C₆F₅ compounds: C₆F₅XeF (66%); C₆F₅H (33%); C₆F₅Cl (1%).

 $[N(CH_3)_4]F$ and $[N(CH_3)_4][BF_4]$ are insoluble in CH_2Cl_2/n -pentane (1:1) at -78 °C and could be separated from the C_6F_5XeF solution by centrifugation at -78 °C. After removal of the solvents under vacuum (1.5 h; -55 to -50 °C; $8 \cdot 10^{-2}$ hPa) a white powder remained, which was dissolved in CH_2Cl_2 (3 mL; -50 °C) in an FEP trap (inner diameter = 8 mm). For growing single crystals, the solution was slowly concentrated in vacuum (8 h; -55 to -45 °C; $8 \cdot 10^{-2}$ hPa). After 8 h colorless transparent crystals (right angular plates; dimensions: 1 to 2 mm) were grown and stored under the mother liquor at -78 °C. The crystal-lographic data are compiled in Table 1.

3. 3. Synthesis of C₆F₅XeF in C₇H₅CN/CH₂Cl₂

A cold solution of $[N(CH_3)_4]F$ (8.9 mg; 0.096 mmol) in CH_2Cl_2 (450 µL; -78 °C) was added to a cold solution of $[C_6F_5Xe][BF_4]$ (20.0 mg; 0.0519 mmol) in C_2H_5CN (50 µL; -78 °C) in an FEP inliner. A suspension resulted. After 20 min the total conversion into C_6F_5XeF (95% yield) was confirmed by ¹⁹F NMR spectroscopy. Only 5% of C_6F_5H and traces of C_6F_6 were present. The co-product $[N(CH_3)_4][BF_4]$ was insoluble.

¹⁹F NMR (C₂H₅CN at -80 °C) δ(ppm): -129.4 (m, ³*J*(F^{2,6}-¹²⁹Xe) = 81 Hz, 2F, *o*-C₆F₅), -147.1 (t, ³*J*(F⁴-F^{3,5}) = 21 Hz, 1F, *p*-C₆F₅), -156.7 (m, 2F, *m*-C₆F₅), -4.0 (s, $\Delta v_{1/2}$ 60 Hz, ¹*J*(¹⁹F-¹²⁹Xe) = 4007 Hz, 1F, XeF), C₆F₅XeF; -139.8 (m, 2F, *o*-C₆F₅), -155.1 (t, ³*J*(F⁴-F^{3,5}) = 21 Hz, 1F, *p*-C₆F₅), -163.1 (m, 2F, *m*-C₆F₅), C₆F₅H; -162.9 (s, $\Delta v_{1/2}$ = 5 Hz, 6F), C₆F₆; -94.4 (s, $\Delta v_{1/2}$ = 44 Hz, 1F), F⁻; molar ratio related to the sum of C₆F₅ compounds: C₆F₅XeF (95%); C₆F₅H (5%); C₆F₆ (<1%); F⁻(82%).

3. 4. Synthesis of C₆F₅XeCl in CH₃CN

(CH₃)₃SiCl (7.1 mg; 0.065 mmol; 8.2 µL) was added to a suspension of $[C_6F_5Xe][BF_4]$ (22.6 mg; 0.0588 mmol) in cold CH₂Cl₂ (350 µL; -78 °C) in an FEP inliner. The starting materials were intensively mixed and the progress of the reaction was monitored by ¹⁹F NMR spectroscopy. After 1 h at -78 °C only traces of C_6F_5XeCl , BF_3 , and (CH₃)₃SiF were formed. Even after 3 h at -40 °C the conversion reached 8% only. The mother liquor was separated from unreacted $[C_6F_5Xe][BF_4]$. The salt was washed twice with cold CH₂Cl₂ (each 300 µL; -78 °C) and dried in vacuum (3 h; -78 to -50 °C; 4 · 10⁻² hPa). Recovered $[C_6F_5Xe][BF_4]$ was dissolved in cold CH₃CN (300 µL; -45 °C) and (CH₃)₃SiCl (6.9 mg; 0.064 mmol; $8.0 \,\mu$ L) was added. After 20 min the total conversion was confirmed by NMR.

¹⁹F NMR (CH₃CN at -40 °C) δ(ppm): -130.3 (m, ³*J*($F^{2.6}$ -¹²⁹Xe) = 91 Hz, 2F, *o*-C₆F₅), -146.7 (tt, ³*J*(F^{4} - $F^{3.5}$) = 20 Hz, ⁴*J*(F^{4} - $F^{2.6}$) = 3 Hz, 1F, *p*-C₆F₅), -156.4 (m, 2F, *m*-C₆F₅), C₆F₅XeCl; -156.2 (dec, ³*J*(F-H) = 7 Hz, ¹*J*(¹⁹F-²⁹Si) = 273 Hz, 1F), (CH₃)₃SiF; -141.6 (s, $\Delta v_{1/2}$ = 31 Hz, 3F), BF₃ · NCCH₃; molar ratio related to C₆F₅XeCl: C₆F₅XeCl (100%); (CH₃)₃SiF (100%); BF₃ · NCCH₃ (100%). ¹H NMR (CH₃CN at -40 °C) δ(ppm): 0.4 (s, $\Delta v_{1/2}$ = 2 Hz, 9H), (CH₃)₃SiCl; 0.2 (d, ³*J*(H-F) = 7 Hz, 9H), (CH₃)₃SiF; molar ratio: (CH₃)₃SiCl (18%); (CH₃)₃SiF (100%)

3. 5. Synthesis of C₆F₅XeCl in C₂H₅CN

A solution of $(CH_3)_3$ SiCl (11.3 mg; 0.104 mmol) in cold C_2H_5CN (200 µL; -78 °C) was added to a solution of $[C_6F_5Xe][BF_4]$ (28.5 mg; 0.0739 mmol) in cold C_2H_5CN (200 µL; -78 °C) in an FEP inliner. At -78 °C only 6% conversion proceeded within 80 min. After 5 min at -55 °C and following storage at -78 °C ¹⁹F NMR spectroscopy confirmed the total conversion. At -50 °C (CH₃)₃SiF was removed from C_6F_5XeCl in vacuum without decomposition of the latter.

¹⁹F NMR (C₂H₅CN at -80 °C) δ(ppm): -131.1 (m, ³*J*(F^{2,6}-¹²⁹Xe) = 94 Hz, 2F, *o*-C₆F₅), -147.3 (t, ³*J*(F⁴-F^{3,5}) = 21 Hz, 1F, *p*-C₆F₅), -157.1 (m, 2F, *m*-C₆F₅), C₆F₅XeCl; -139.5 (m, 2F, *o*-C₆F₅), -154.6 (m, ³*J*(F⁴-F^{3,5}) = 21 Hz, 1F, *p*-C₆F₅), -162.5 (m, 2F, *m*-C₆F₅), C₆F₅H^{*}; -157.1 (dec, ³*J*(F-H) = 7 Hz, ¹*J*(¹⁹F-²⁹Si) = 273 Hz, 1F), (CH₃)₃SiF; -142.2 (s, $\Delta v_{1/2} = 5$ Hz, 3F), BF₃ · NCC₂H₅; -151.1 (br, $\Delta v_{1/2} = 19$ Hz, 4F), [BF₄]⁻; molar ratio related to the sum of C₆F₅ compounds: C₆F₅XeCl (98%), C₆F₅H (2%), (CH₃)₃SiF (100%), BF₃ · NCC₂H₅ (92%), [BF₄]⁻ (3%).^{*} C₆F₅H (2%) resulted during the dissolution of [C₆F₅Xe][BF₄] in C₂H₅CN already and did not increase after addition of (CH₃)₃SiCl.

¹H NMR (C_2H_5CN at -80 °C) δ (ppm): 7.4 (t, ³*J*(H-F^{2.6}) = 8 Hz, 1H), C_6F_5H ; 0.4 (s, $\Delta v_{1/2} = 4$ Hz, 9H), (CH₃)₃SiCl; 0.2 (d, ³*J*(H-F) = 7 Hz, 9H), (CH₃)₃SiF; 0.1 (s, $\Delta v_{1/2} = 4$ Hz, 18H), ((CH₃)₃Si)₂O^{**}; molar ratio: C_6F_5H (2%), (CH₃)₃SiCl (38%), (CH₃)₃SiF (100%), ((CH₃)₃Si)₂O (2%); ^{**} (CH₃)₃SiCl contained 1% ((CH₃)₃Si)₂O.

C₆F₅XeCl

¹⁹F NMR (C_2H_5CN at -80 °C) $\delta(ppm)$: -131.1 (m, ³ $J({}^{19}F^{2.6}-{}^{129}Xe) = 94$ Hz, 2F, $o-C_6F_5$), -147.3 (t, ³ $J(F^4-F^{3.5})$ = 21 Hz, 1F, $p-C_6F_5$), -157.1 (m, 2F, $m-C_6F_5$); (cf., ref 7 (CH₂Cl₂ at -60 °C) $\delta(ppm)$: -130.8, -146.2, -155.5, (C_2H_5CN/CH_3CN (3:1) at -60 °C) $\delta(ppm)$: -131.0, -147.5, -157.0). ¹³C{¹⁹F} NMR (C_2H_5CN at -80 °C) $\delta(ppm)$: 144.2 (s, C⁴), 143.8 (s, C^{2.6}), 138.7 (s, C^{3.5}), 103.5 (s, ¹ $J({}^{13}C^{1}-{}^{129}Xe) = 231$ Hz, C¹); (cf., ref 7 (CH₂Cl₂ at -60 °C) $\delta(ppm)$: 143.3, 142.6, 137.6, 101.6). ¹²⁹Xe NMR (C_2H_5CN at -80 °C) $\delta(ppm)$: -4077 (br, $\Delta v_{V_2} = 206$ Hz); (cf., ref 7 (CH₂Cl₂ at -60 °C) $\delta(ppm)$: -4117).

Bilir and Frohn: C_6F_5XeY Molecules (Y = F and Cl): New Synthetic ...

3. 6. Interaction of [N(*n*-C₄H₉)₄][BF₄] with (CH₃)₃SiCl in CH₃CN

(CH₃)₃SiCl (16.8 mg; 0.155 mmol; 19.6 μL) was added into an FEP inliner which contained [N(n-C₄H₉)₄][BF₄] (50.8 mg; 0.154 mmol) dissolved in CH₃CN (500 μL). C₆H₅CF₃ (11.0 mg; 0.0752 mmol; 9.2 μL) was added as internal standard for integration. The progress of the reaction was monitored by ¹⁹F NMR at 24 °C. After 1.5 h the amount of [BF₄]⁻ was reduced by 17% and after 1 d by 19% only. Besides (CH₃)₃SiF, [BCIF₃]⁻ was formed (broad singlet at -123.5); (cf., ref 20). The anions [BCl₂F₂]⁻ (¹J(¹⁹F-¹¹B) = 54 Hz) and [BCl₃F]⁻ (¹J(¹⁹F-¹¹B) = 79 Hz) with significant larger ¹J(¹⁹F-¹¹B) coupling constants than [BCIF₃]⁻ (¹J(¹⁹F-¹¹B) = 25 Hz) and smaller quantities were not observed.²⁰

¹⁹F NMR (CH₃CN at 24 °C) δ(ppm): -123.5 (s, $\Delta v_{\frac{1}{2}}$ = 177 Hz, 3F), [BClF₃]⁻; -149.8 (s, $\Delta v_{\frac{1}{2}}$ = 20 Hz, 4F), [BF₄]⁻; -155.9 (dec, ³*J*(F-H) = 7 Hz, 1F), (CH₃)₃SiF; molar ratio after 1.5 h: [BClF₃]⁻: [BF₄]⁻: (CH₃)₃SiF = 14 : 83 : 20, after 1 d: [BClF₃]⁻: [BF₄]⁻: (CH₃)₃SiF = 8 : 81 : 31.

¹H NMR (CH₃CN at 24 °C) Δ(ppm): 3.1 (m, ¹*J*(H-¹³C) = 143 Hz, 8H, C¹H₂), 1.6 (tm, ³*J*(H²-H³) = 7 Hz, 8H, C²H₂), 1.4 (tq, ³*J*(H³-H²) = 7 Hz, ³*J*(H³-H⁴) = 7 Hz, 8H, C³H₂), 1.0 (t, ³*J*(H⁴-H³) = 7 Hz, ¹*J*(H-¹³C) = 125 Hz, 12H, C⁴H₃), [N(*n*-C₄H₉)₄]⁺; 0.4 (s, $\Delta v_{1/2} = 1$ Hz, 9H), (CH₃)₃SiCl; 0.2 (d, ³*J*(H-F) = 7 Hz, 9H), (CH₃)₃SiF; molar ratio after 1.5 h: [N(*n*-C₄H₉)₄]⁺ (100%); (CH₃)₃SiCl (73%); (CH₃)₃SiF (20%); after 1d: [N(*n*-C₄H₉)₄]⁺ (100%); (CH₃)₃SiCl (63%); (CH₃)₃SiF (31%)

¹¹B NMR (CH₃CN at 24 °C) δ (ppm): 1.7 (s, Δv_{y_2} = 121 Hz), [BClF₃]⁻; -1.3 (s, Δv_{y_2} = 15 Hz), [BF₄]⁻.

3. 7. Reaction of [C₆F₅Xe][BF₄] with (C₂H₅)₃SiH in CD₃CN

 $(C_2H_5)_3$ SiH (9.5 mg; 0.082 mmol; 13 µL) was added to a solution of $[C_6F_5Xe][BF_4]$ (24.5 mg; 0.0636 mmol) in cold CD₃CN (500 µL; -40 °C) in an FEP inliner. The mixture was intensively shaken and after 20 min analyzed by ¹⁹F and ¹¹B NMR spectroscopy.

¹⁹F NMR (CD₃CN at -40 °C) δ (ppm): -131.8 (m, ${}^{3}J(F^{2,6}{}^{129}Xe) = 43$ Hz, 4F, $o - C_{6}F_{5}), -153.8$ (t, ${}^{3}J(F^{4}{}-F^{3,5}) =$ 21 Hz, 2F, p-C₆F₅), -158.7 (m, 4F, m-C₆F₅), (C₆F₅)₂Xe;⁴ $-139.3 \text{ (m, 2F, } o\text{-}C_6F_5\text{)}, -154.8 \text{ (t, } {}^{3}J(F^{4}\text{-}F^{3,5}\text{)} = 21 \text{ Hz}, 1F,$ p-C₆F₅), -162.5 (m, 2F, m-C₆F₅), C₆F₅H; -139.6 (m, 2F, $o-C_6F_5$), -154.8 (t, ${}^{3}J(F^4-F^{3,5}) = 21$ Hz, 1F, $p-C_6F_5$), -162.6 (m, 2F, m-C₆F₅), C₆F₅D; -138.3 (m, 4F, o-C₆F₅), -151.0 $(t, {}^{3}J(F^{4}-F^{3,5}) = 21$ Hz, 2F, $p-C_{6}F_{5}$, -160.6 (m, 4F, $m-C_6F_5$), $(C_6F_5)_2$; -142.7 (m, 2F, $o-C_6F_5$), -155.8 (tm, ${}^{3}J(\mathrm{F}^{4}-\mathrm{F}^{3,5}) = 21$ Hz, 1F, $p-\mathrm{C}_{6}\mathrm{F}_{5}$), -161.9 (m, 2F, $m-\mathrm{C}_{6}\mathrm{F}_{5}$), $C_6F_5CH_2CH_3$; -134.9 (m, 2F, o- C_6F_5), -141.5 (tt, ${}^{3}J(F^{4} F^{3,5}$ = 21 Hz, ${}^{4}J(F^{4}-F^{2,6}) = 8$ Hz, 1F, $p-C_{6}F_{5}$, -159.6 (m, 2F, m-C₆F₅), $[C_6F_5C(CD_3)=N(H,D)_2]^{+a}$; –127.2 (m, 2F, o- C_6F_5 , -152.7 (tt, ${}^{3}J(F^4-F^{3,5}) = 20$ Hz, ${}^{4}J(F^4-F^{2,6}) = 3$ Hz, 1F, p-C₆F₅), -161.9 (m, 2F, m-C₆F₅), C₆F₅Si(C₂H₅)₃^b; -174.4 (sep, ${}^{3}J(F-H) = 6$ Hz, ${}^{1}J({}^{19}F-{}^{29}Si) = 286$ Hz, 1F), $\begin{array}{l} (C_{2}H_{5})_{3}\text{SiF}^{c}; -180.5 \ (\text{dquin}, {}^{2}J(\text{F-H}) = 53 \ \text{Hz}, {}^{3}J(\text{F-H}) = 7 \\ \text{Hz}, 1\text{F}), \ (C_{2}H_{5})_{2}\text{SiFH}; -142.9 \ (\text{quin}, {}^{3}J(\text{F-H}) = 5 \ \text{Hz}, 2\text{F}), \\ (C_{2}H_{5})_{2}\text{SiF}_{2}^{-d}; -141.7 \ (\text{br}, \ \Delta v_{\frac{1}{2}} = 212 \ \text{Hz}, 3\text{F}), \ \text{BF}_{3} \cdot \\ \text{NCCD}_{3}; -149.4 \ (\text{br}, \ \Delta v_{\frac{1}{2}} = 438 \ \text{Hz}, 4\text{F}), \ [\text{BF}_{4}]^{-}; \ \text{molar ratio after 20 min related to the sum of } C_{6}F_{5} \ \text{compound}; \\ (C_{6}F_{5})_{2}\text{Xe} \ (5\%), \ C_{6}F_{5}\text{H} \ (61\%), \ C_{6}F_{5}\text{D} \ (2\%), \ (C_{6}F_{5})_{2} \ (1\%), \\ C_{6}F_{5}\text{CH}_{2}\text{CH}_{3} \ (5\%), \ \ [C_{6}F_{5}\text{C}(\text{CD}_{3}) = \text{N}(\text{H,D})_{2}]^{+} \ (19\%), \\ C_{6}F_{5}\text{Si}(C_{2}H_{5})_{3} \ (2\%), \ (C_{2}H_{5})_{3}\text{SiF} \ (52\%), \ (C_{2}H_{5})_{2}\text{SiFH} \\ (7\%), \ (C_{2}H_{5})_{2}\text{SiF}_{2} \ (6\%), \ \text{BF}_{3} \cdot \text{NCCH}_{3} \ (94\%), \ [\text{BF}_{4}]^{-} \\ (6\%). \end{array}$

(^a cf., ref 14 (CDCl₃) δ (ppm): -136.2, -143.9, -155.1 [C₆F₅C(CH₃)=N(C₂H₅)₂]⁺; ^b cf., ref 21 (CCl₄) δ (ppm): -127.2, -152.6, -162.0; ^c cf., ref 22 (C₆D₆) δ (ppm): -175.2; ^d cf., ref 23 (CCl₄) δ (ppm): -145.7). ¹¹B NMR (CH₃CN at -40 °C) δ (ppm): -1.4 (s, $\Delta v_{\nu_2} = 10$ Hz), [BF₄]⁻; -2.2 (s, $\Delta v_{\nu_2} = 37$ Hz), BF₃ · NCCD₃.

3. 8. Reaction of [C₆F₅Xe][BF₄] with (C₂H₅)₃SiH in C₂H₅CN

A solution of $[C_6F_5Xe][BF_4]$ (59.5 mg; 0.1546 mmol) in cold C₂H₅CN (200 µL; -90 °C) was transferred to a solution of $(C_2H_5)_3$ SiH (19.2 mg; 0.165 mmol; 26 µL) in cold C₂H₅CN (150 µL; -90 °C) and vigorously mixed before the reaction was monitored by ¹⁹F NMR spectroscopy. After 20 min at -90 °C 63% of the [C₆F₅Xe]⁺ cation and 44% of $[BF_4]^-$ was reacted. All reaction products are comparable with that in CD₃CN, except the product deriving from the C_6F_5 radical attack on the solvent. In C₂H₅CN the cation $[C_6F_5C(C_2H_5)=NH_2]^+$ (δ (ppm): -136.7 (br, $\Delta v_{1/2} = 45$ Hz, 2F, $o-C_6F_5$), -142.4 (br, 1F, p- C_6F_5 , -160.1 (br, $\Delta v_{1/2} = 51$ Hz, 2F, m- C_6F_5)) was formed. Molar ratio of products related to the sum of B-F compounds after 20 min: $[C_6F_5Xe]^+$ (37%); $(C_6F_5)_2Xe$ (4%); C_6F_5H (37%), (C_6F_5)₂ (traces), $[C_6F_5C(C_2H_5)=NH_2]^+$ $(9\%), C_6F_5Si(CH_3CH_2)_3$ (1%), $(CH_3CH_2)_3SiF$ (31%); (CH₃CH₂)₂SiFH (4%); (CH₃CH₂)₂SiF₂ (6%); BF₃ · $NCC_{2}H_{5}$ (44%); $[BF_{4}]^{-}$ (56%). The ratio stayed nearly constant after 100 min at -90 °C, but changed after 5 d at -70 °C: (C₆F₅)₂Xe (2%), C₆F₅H (58%), (C₆F₅)₂ (1%), $[C_6F_5C(C_2H_5)=NH_2]^+$ (17%), $C_6F_5Si(CH_3CH_2)_3$ (2%), (CH₂CH₂)₂SiF (44%), (CH₃CH₂)₂SiFH (2%), $(CH_{3}CH_{2})_{2}SiF_{2}$ (8%), $BF_{3} \cdot NCC_{2}H_{5}$ (65%), $[BF_{4}]^{-}$ (35%). ¹²⁹Xe NMR (CH₃CH₂CN at -90 °C after 55 min)

 $\delta(\text{ppm})$: -3971; (m) [C₆F₅Xe]⁺; -4134 (m) (C₆F₅)₂Xe.

3. 9. Synthesis of Bis(pentafluorophenyl) Xenon(II) in C₂H₅CN

Solid Cd(C₆F₅)₂ (25.6 mg; 0.0574 mmol; -78 °C) was deposited in an FEP inliner. A cold solution of $[C_6F_5Xe][BF_4]$ (41.2 mg; 0.107 mmol) in C₂H₅CN (400 µL; -78 °C) was added and the mixture was intensively shaken at -78 °C. A white suspension resulted which was characterized by ¹⁹F NMR spectroscopy after 2.5 h at -80 °C: δ /ppm -131.8 (m, ³J(F^{2.6}-¹²⁹Xe) = 43 Hz, 4F, *o*-C_6F_5),

Bilir and Frohn: C_6F_5XeY Molecules (Y = F and Cl): New Synthetic ...

-153.5 (t, ${}^{3}J(F^{4}-F^{3,5}) = 20$ Hz, 2F, p-C₆F₅), -158.6 (m, 4F, m-C₆F₅). After separation (-78 °C), the solid fraction was repeatedly washed with cold C₂H₅CN (4 x 400 µL; -78 °C) and incorporated Cd(C₆F₅)₂ and Cd[BF₄]₂ were removed. The product (C₆F₅)₂Xe (almost quantitative yield) was only slightly soluble in C₂H₅CN (-78 °C) and shock-sensitive even in suspension. Decomposition proceeded also when pressure was exerted on the solid in suspension, e.g., with a spatula, and a yellow solution resulted which contained (C₆F₅)₂ and C₆F₅H in the molar ratio 83 : 17.

4. Conclusion

Strongly coordinating nitrile molecules (CH₃CN, C_2H_5CN) can be replaced in the coordination sphere of the electrophilic Xe^{II} centre of the [C₆F₅Xe]⁺ cation by anions which are stable against oxidation such as F⁻.

More oxidizable anions such as Cl⁻ can be introduced into the $[C_6F_5Xe]^+$ moiety with support of $[BF_4]^-$ as the counterion using $(CH_3)_3$ SiHal. Fluoride in the coproduct, $(CH_3)_3$ SiF, originates from the $[BF_4]^-$ anion. The latter is transformed into the solvent adduct $BF_3 \cdot$ NCAlk. Anions which are sensitive to oxidation can be protected by interaction with Lewis acids such as H⁺ or BF_3 .

The reaction of $[C_6F_5Xe]^+$ with $(C_2H_5)_3$ SiH in nitrile solvents is complex. From the observed products, two intermediates C_6F_5XeH and $C_6F_5XeC_2H_5$ can be deduced. Alternatively to C_6F_5XeH , a one-electron transfer in cage from H⁻ to $[C_6F_5Xe]^+$ as main reaction channel cannot be excluded.

Oxidation resistant organyl groups of organometallic compounds such as $Cd(C_6F_5)_2$ are nucleophilic enough to replace nitrile solvent molecules coordinated at Xe^{II} in $[C_6F_5Xe]^+$. The carbon nucleophile does not interact with the $[BF_4]^-$ anion. Formally, a metathesis of the $[BF_4]^-$ anion by the carbanion $[C_6F_5]^-$ proceeds. The reaction of organylxenonium salt solutions in nitrile solvents with organometallic compounds which possess a very polar M-C bond promises an interesting access to new organylxenon compounds, R¹-Xe-R².

5. Acknowledgements

We have to thank Dieter Bläser and Professor Roland Boese for the X-ray structure determination.

6. References

 (a) H.-J. Frohn, V. V. Bardin, in: K. K. Laali (Ed.): Recent Developments in Carbocation and Onium Ion Chemistry, ACS Symposium Series 965, American Chemical Society, Washington, USA, 2007, pp. 428–457. (b) W. Tyrra, D. Naumann, in: G. Meyer, D. Naumann, L. Wesemann (Eds.) Inorganic Chemistry Highlights, Wiley-VCH, Weinheim, Germany, **2002**, pp. 297-316.

(c) H.-J. Frohn, V. V. Bardin, *Organometallics* **2001**, *20*, 4750–4762.

- H. Bock, H. Scherer, W. Tyrra, D. Naumann, J. Fluorine Chem. 2006, 127, 1440–1445.
- 3. M. Theißen, PhD Thesis, University of Duisburg-Essen, 2003.
- 4. H.-J. Frohn, M. Theißen, Angew. Chem. Int. Ed. 2000, 39, 4591-4593.
- 5. H.-J. Frohn, M. Theißen, J. Fluorine Chem. 2004, 125, 981–988.
- N. Maggiarosa, D. Naumann, W. Tyrra, *Angew. Chem. Int.* Ed. 2000, 39, 4588–4591.
- H.-J. Frohn, T. Schroer, G. Henkel, Angew. Chem. Int. Ed. 1999, 38, 2554–2556.
- H.-J. Frohn, A. Klose, T. Schroer, G. Henkel, V. Buss, D. Opitz, R. Vahrenhorst, *Inorg. Chem.* **1998**, *37* 4884–4890.
- K. Koppe, H.-J. Frohn, H. P. A. Mercier, G. J. Schrobilgen, *Inorg. Chem.* 2008, 47, 3205–3217.
- 10. Frohn, A. Klose, G. Henkel, *Angew. Chem. Int. Ed.* **1993**, *32*, 99–100.
- 11. H. Bock, D. Hinz-Hübner, U. Ruschewitz, D. Naumann, *Angew. Chem. Int. Ed.* **2002**, *41*, 448–450.
- 12. (a) H. A. Levy, P. A. Agron, J. Am. Chem. Soc. 1963, 85, 241–243.

(b) S. Reichman, F. Schreiner, J. Chem. Phys. 1969, 51, 2355–2358.

- D. Naumann, R. Gnann, V. Padelidakis, W. Tyrra, J. Fluorine Chem. 1995, 72, 79–82.
- 14. A. C. Albéniz, P. Espinet, R. Manrique, A. Pérez-Mateo, *Chem. Eur. J.* 2005, *11*, 1565–1573.
- 15. G. A. Schumacher, G. J. Schrobilgen, *Inorg. Chem.* **1984**, *23*, 2923–2929.
- H.-J. Frohn, H. Franke, V. V. Bardin, Z. Naturforsch. 1999, 54b, 1495–1498.
- 17. (a) H.-J. Frohn, M.E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 2539–2550;
 (b) W. L. F. Armarego, C. Li Lin Chai, Purification of Laboratory Chemicals. 5th Edition, Elsevier, Butterworth-Heinemann, Oxford, Great Britain, 2003.
- M. Schmeißer, M. Weidenbruch, *Chem. Ber.* 1967, 100, 2306–2311.
- H.-J. Frohn, in: H. W. Roesky (Ed.): Efficient Preparation of Fluorine Compounds, Wiley-VCH, Weinheim, Germany, 2013, pp. 76-78.
- 20. J. S. Hartman, G. J. Schrobilgen, *Inorg. Chem.* **1972**, *11*, 940–951.
- 21. G. Hägele, M. Weidenbruch, Chem. Ber. 1973, 106, 460-470.
- 22. R. Panisch, M. Bolte, T. Müller, J. Am. Chem. Soc. 2006, 128, 9676–9682.
- 23. E. Schnell, E. G. Rochow, J. Inorg. Nucl. Chem. 1958, 6, 303–307.

Povzetek

Soli $[C_6F_5Xe][BF_4]$ regirajo z različnimi viri nukleofilnih zvrsti Y (»goli« fluorid, $[N(CH_3)_4]F$, silani, $(CH_3)_3SiCl$ in $(C_2H_5)_3SiH$ ter $Cd(C_6F_5)_2$) v koordinirajočih topilih $(C_2H_5CN, CH_3CN, CD_3CN)$. Produkte C_6F_5XeF , C_6F_5XeCl in $(C_6F_5)_2Xe$ smo uspeli jasno določiti. V primeru reakcije s $(C_2H_5)_3SiH$ pa smo uspeli določiti le produkte razgradnje, ki lahko izvirajo iz $<C_6F_5XeH>$ in $<C_6F_5XeC_2H_5>$. Spojino C_6F_5XeF smo karakterizirali z rentgensko strkturno analizo monokristalov.