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Abstract
A new method orthogonal projection to latent structures (O-PLS) combined with artificial neural networks is investiga-

ted for non-destructive determination of ebastine powder via near-infrared (NIR) spectroscopy. The modern NIR spec-

troscopy is efficient, simple and non-destructive technique, which has been used in chemical analysis in diverse fields.

Being a preprocessing method, O-PLS provides a way to remove systematic variation from an input data set X not cor-

related to the response set Y, and does not disturb the correlation between X and Y.

In this paper, O-PLS pretreated spectral data was applied to establish the ANN model of ebastine powder, in this model,

the concentration of ebastine as the active component was determined. The degree of approximation was employed as

the selective criterion of the optimum network parameters. In order to compare the OPLS-ANN model, the calibration

models that use first-derivative and second-derivative preprocessing spectra were also designed. Experimental results

showed that the OPLS-ANN model was the best.
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1. Introduction
Near-infrared spectral analytical technique for quan-

titative and qualitative analysis is finding wide application
in as different fields as agriculture, food, chemical indu-
stry,1–6 and especially in pharmaceutical industry,7–10

mainly due to its advantages over other analytical techni-
ques, such as being expeditious, without destruction, low
cost, being adaptable for almost all kinds of samples in all
states, and with little or no sample preparation. Frequent-
ly the objective with this characterization is to determine
the concentrations of different components in the samples.
Compared to conventional analytical method, NIR spec-
troscopy not only attracts the attention of researchers in
pharmaceutical industry, but also draws more attention of
researchers in other research and exploitation areas with
its unparalleled advantages. However, NIR spectra often
contain serious systematic variation that is unrelated to
the responses Y, and the analyte of interest absorbs only
in small parts of the spectral region. For solid samples this
systematic variation is mainly caused by light scattering

and differences in spectroscopic path length. Furthermore,
the baseline and slope variations may often constitute the
major part of the variation of the sample spectra. The va-
riation in X that is unrelated to Y may disturb the multiva-
riate modeling and cause imprecise predictions for new
samples and also affect the robustness of the model over
time. So the first step of a multivariate calibration based
on NIR spectra is often to preprocess the data. 

Preprocessing methods commonly used for NIR
spectral data include smoothing, derivation, multiplicative
signal correction (MSC) and standard normal variate
(SNV). These signal corrections are different cases of fil-
tering, practical effect of the first derivative is that it remo-
ves an additive baseline. The second derivative removes
also a multiplicative baseline. But the drawback of using
derivatives is the inevitable change of the shape of the
spectra. SNV and MSC remove both additive and multi-
plicative baseline variation without altering the shape of
the spectra. These methods, however, require a spectral re-
gion which is less dependent on chemical information.11

Being a generally applicable preprocessing and filtering
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method, O-PLS provides a way to remove systematic va-
riation from an input data set X not correlated to the res-
ponse set Y;12 In other words, to remove variability in X
that is orthogonal to Y, and does not disturb the correlation
between X and Y. By applying this method, model com-
plexity has been reduced and the ability of prediction has
been preserved, effective improvement of interpretational
ability of both correlated and non-correlated variation in
the NIR spectra, and no time-consuming internal iteration
is present, making it very fast to calculate.

In quantitative analysis, artificial neural networks
are more and more widely applied during the past several
years.13–20 The main advantage of ANNs is their anti-noise
and robust non-linear transfer ability. In proper model,
ANNs result in lower calibration errors and prediction er-
rors. They are an alternative to model non-linear data sets
when the more classical multivariate calibration methods
fail.

In this work, a method for expeditious, non-destruc-
tive analysis of ebastine (Fig. 1) as active component in
ebastine powder has been developed by using O-PLS met-
hod combined with artificial neural networks. After the
NIR spectra were acquired, O-PLS was applied to remove
the non-correlated systematic variation, thus enhancing
the chemical information in the spectra. The filtered data

ho and Portho are the score matrix and loading matrix of ort-
hogonal components, respectively, so the filtered data can
be obtained by remove TorthoP

T
ortho from X. Therefore, the

calculation of TorthoP
T

ortho is the main step of O-PLS met-
hod. The O-PLS preprocessing method with a single res-
ponse set y is described as following: 

1. Optionally transform, center and scale the raw da-
ta to give the matrices X and y.

2. Calculation of the parameters w, t, p, u and c with
the normal NIPALS method for single y.21

wT = YTX / YTY (1)

w = w / ||w|| (2)

t = Xw / wTw (3)

cT = tTy / tTt (4)

u = yc / cTc (5)

pT = tTX / tTt (6)

Where w represents the weight vector of X, t is the
score vector of X, p is the loading vector of X, u is the sco-
re vector of y and c is the loading vector of y.

3. Calculation of weight, score and loading vector of
the orthogonal variation.

wortho = p – [wTp / wTw] w (7)

wortho = wortho / ||wortho|| (8)

tortho = Xwortho / wT
ortho wortho (9)

portho = XT tortho/ t
T

ortho tortho (10)

Where wortho represents the weight vector of ortho-
gonal variation, tortho is the score vector of orthogonal va-
riation and portho is the loading vector of orthogonal varia-
tion.

4. Calculation of the residual matrix and save found
parameters.

Eortho = X-tortho p
T

ortho (11)

Eortho represents the residual matrix. For saving of
found parameters, set

Tortho = [Torthotortho], Portho = 
= [Porthoportho], Wortho = [Worthowortho] (12)

Where Tortho is score matrix of the orthogonal com-
ponents, Portho is the loading matrix of the orthogonal
components and Wortho is the weight matrix of the ortho-
gonal components.

Figure 1. Structural formula of ebastine

then were used as the input data during the establishment
of ANN model, in this model, the concentration of ebasti-
ne was determined. Subsequently, the calibration models
that use first-derivative and second-derivative preproces-
sing spectra were designed to compare with the OPLS-
ANN model. Of all the optimal models, OPLS-ANN mo-
del shows the best result.

2. Theory

2. 1. O-PLS Preprocessing Method
In order to simplified interpretation of the data, O-

PLS method uses input data set X and the response set Y to
filter and remove variation in X not correlated to Y, and O-
PLS does not show any degradation of results compared
to non-treated data. For an input data set X, TorthoP

T
ortho re-

presents the matrix of orthogonal components, where Tort-
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5. For additional orthogonal components, return to
step 2 and set X = Eortho, otherwise continue to next step.

6. Get the filtered data.

E o– PLS = X-Tortho P
T

ortho (13)

Tortho P
T

ortho is the matrix of orthogonal components
7. Filtered method for unknown input data set Xnew

of the new samples.

enew = Xnew –XnewWortho (PT
orthoWortho)

–1PT
ortho           (14)

After preprocessing with O-PLS method, the filtered
data EO-PLS does not contain any variation that is orthogo-
nal to y, so the stability of the model has been greatly im-
proved.

2. 2. Artificial Neural Networks

The current interest in artificial neural networks is
largely due to their ability to mimic natural intelligence in
its learning from experience.22 They learn from examples
by constructing an input–output mapping without explicit
derivation of the model equation. Artificial neural net-
works are parallel computational devices consisting of
groups of highly interconnected processing elements cal-
led neurons. Neural networks are characterized by topo-
logy, computational characteristics of their elements, and
training rules. Traditional neural networks have neurons
arranged in a series of layers. The first layer is termed the
input layer, and each of its neurons receives information
from the exterior, corresponding to one of the independent
variables used as inputs. The last layer is the output layer,
and its neurons handle the output from the network. The
layers of neurons between the input and output layers are
called hidden layers. Each layer may make its indepen-
dent computations and may pass the results yet to another
layer. In feed-forward neural networks the connections

among neurons are directed upwards, i.e. connections are
not allowed among the neurons of the same layer or the
preceding layer. Networks where neurons are connected
to themselves, with neurons in the same layer or neurons
from a preceding layer, are termed feedback or recurrent
networks. Of all the ANNs, the back-propagation algo-
rithm is perhaps the most widely used supervised training
algorithm for multilayered feed-forward networks.23 A
feed-forward phase is initially performed on an input pat-
tern to calculate the net error, then, the algorithm uses this
computed output error to change the weight values in the
backward direction. The error is slowly propagated back-
ward through the hidden layers.

Therefore, every layer is fully linked to the suc-
ceeding layer and the outputs from the hidden layer act
as the inputs for the output layer. Figure 2 shows the
outline of the O-PLS method combined with artificial
neural networks.

2. 3. Evaluation of Artificial Neural Networks

The present criterion of optimization of the network
is to minimize the error of the training set or the monito-
ring set. However, it is very easy to choose an over fitting
model, namely, when the test set error is less than the pre-
cision of the reference method and this may or may not be
at the minimum of the test set error. This kind of network
is unsteady when it is used to predict an unknown sample.
These unsteady factors are usually due to excessive num-
ber of iterations. To avoid these two kinds of situations, a
new evaluation criterion of the network, the degree of ap-
proximation, is employed.24 The definition of this crite-
rion is given by Equations (15) and (16)

ea = (n1 /n)e1 + (nc/n)ec + |e1-ec| (15)

Where ea is the error of the approximation, e1 and ec

are the relative standard errors of training set and monito-

Figure 2. Outline of O-PLS combined with artificial neural network.
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ring set, n1 and nc are the sample numbers of training set
and monitoring set, n is the whole number of known sam-
ples, and n1/n and nc/n are the weights contributed to the er-
ror of approximation (ea) by training set and monitoring set.

Da = c/ea (16)

Where Da represents the degree of approximation
and c is a constant number by which Da is adjusted to get
a good chart. It is very obvious that the smaller ea, the lar-
ger Da can obtain the better ANNs models, which are ap-
proaching to the real data. Therefore, the effects of both
training set and monitoring set are considered in this eva-
luation criterion.

The predictive abilities of training set, monitoring
set and test set were compared in terms of the relative
standard error (RSE),25,26 defined as

(17)

Where n is the number of samples included in the
validation set, CREF and CNIR are concentrations of sam-
ples provided by the State Drug Standard method and the
NIR method, respectively.  

3. Experimental

3. 1. Apparatus and Software
All of the NIR diffuse reflectance spectra were mea-

sured with a ShimadzuR UV–vis-NIR-3100 spectropho-
tometer equipped with ISR-3101 integrating sphere. Data
were transferred to a microcomputer through a RS-232C
interface. The extended deltabar-delta back-propagation
training routines contained in the Neural Works Explorer
software package were used. Near-infrared spectral analy-
sis software, from spectrophotometer, enables recording
of spectra and their mathematical processing of deriva-
tion. The preprocessing software of O-PLS method was
designed in our laboratory.

3. 2. Preparation of Samples

All of the pharmaceutical raw materials, including
ebastine as active component and starch as main excipient

were supplied by Meivo Pharmaceutical Company (Cairo,
Egypt). Laboratory samples were prepared from overdo-
sing to underdosing production samples. In this way, sam-
ples containing ebastine at three different concentration
levels (viz., the nominal content and concentrations ap-
proximately 3% above and 3% below the stated value)
were prepared. The average concentration of ebastine was
77.63%, and the concentration range of all the samples
was 65.17–91.11%. All of the samples were homogenized
in the shaker mixer. Each sample was shaken for approxi-
mately 30min. before its NIR spectrum was recorded.
This was followed by further mixing for 10 min. and re-
cording of the spectrum once more. When two consecuti-
ve spectra were identical, the sample was considered to be
homogeneous; otherwise, the process was repeated until
its condition was met. 156 batches of different concentra-
tions of experimental powder samples were divided into
three groups stochastically: the training set including 90
samples, the monitoring set including 42 samples and the
test set including 24 samples. Table 1 shows the statistical
data of the reference concentrations of the three sets. The
reference concentrations of ebastine were measured ac-
cording to the British Pharmacopoeia.27

3. 3. Recording of NIR Spectra

Short-wavelength NIR spectra were measured for in-
dividual powder over the wavelength range 780–1100 nm

Table 1. Component contents of ebastine

Ebastine (%g/g) Starch (%g/g)
Maximum Minimum Average Maximum Minimum Average

Training set 91.11 65.17 79.78 11.89 31.83 20.22

Monitoring set 90.87 65.63 77.82 11.63 32.57 22.18

Test set 82.42 68.77 75.29 18.98 30.23 24.71

Figure 3. Short wave length NIR reflectance spectra of ebastine

powder.

× 100
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at 1 nm intervals. Each recorded spectrum was the avera-
ge of 12 scans and all measurements were obtained in the
reflectance mode. The entrance slit of NIR spectrophoto-
meter used was 20 nm. The original spectra for different
concentration samples were shown in Fig. 3. As can been
seen, the spectra baselines shift considerably. Therefore,
the preprocessing of the input data is necessary.

4. Results and Discussion

4. 1. Selection of Number of Orthogonal
Components

Here eigenvalue criterion is employed to estimate
the number of orthogonal components; the eigenvalue ap-
proach is to analyze the ratio of ||p-[wTp/(wTw)] w||/ ||p||,
which becomes zero for correlated O-PLS components if
no orthogonal variation is present in X. 

A plot of the ratio ||p-[wTp/(wTw)] w|| / ||p|| versus the
number of orthogonal components gives a good indication
of the number of orthogonal components to extract. In
Fig. 4 this ratio for each OPLS component is shown, and
three orthogonal components were removed from X, be-
cause after three components the amplitude is down at

cause there was only one kind of active ingredient in eba-
stine powder samples, so the output layer contained one
neuron. Neural networks were trained with different num-
ber of hidden neurons and numbers of cycle. At the begin-
ning of a training run, both momentum and learning coef-
ficient were initialized with optional values. Being in ope-
ration process, the modifications of the network input no-
des (10–80), hidden nodes (4–31), learning coefficient
(0.01–0.43), momentum (0.01–0.43) and number of itera-
tions (600–3300) were selected by the back-propagation
of the error and the degree of approximation. When all the
adjustable parameters of the neural network were optimi-
zed, the neural network showed a high ability of generali-
zation. The training set was used to train the network; the
monitoring set was used to avoid over-fitting and the ma-
ximal degree of approximation was used to determine the
network topology parameters (number of input, hidden,
iterations, momentum and learning coefficient). While the
network was optimized; the testing data were fed into the
network to evaluate the trained network.

4. 3. The Establishment of ANN Model 
by O-PLS Preprocessed Spectral Data

4. 3. 1. Selection of Number of Input/output
Nodes and Hidden Nodes

The different number of input nodes, namely, the
different interval of wavelength was changed in order to
sieve the data. Figure 5 shows the effect of the different
number of input nodes.

Figure 4. Selection of number of orthogonal components.

Figure 5. Effect of input nodes: (a) relative standard error of trai-

ning set; (b) relative standard error of monitoring set; (c) degree of

approximation.

noise level. After the removal of three orthogonal compo-
nents from X, the residual matrix is used as input data of
artificial neural networks.

4. 2. Training and Optimization of ANN
Models
In this paper, three layers back-propagation network

was used. The properties of the training set data determine
the number of input and output neurons. The pretreated
spectral data of the samples were regarded as input nodes.
The different number of input nodes (the different interval
of wavelength) was changed in order to scan the data. Be-

Obviously, the relative standard errors of both trai-
ning set and monitoring set reduced gradually when the
number of input nodes increased. When number of input
nodes was 50 (the interval of wavelength was 8 nm), the
network had the highest degree of approximation. When
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the number of input nodes exceeded 50, the relative stan-
dard error of training set decreased and monitoring set in-
creased. Thus, the degree of approximation deduced visi-
bly, the network appeared the over fitting phenomenon. 

The number of hidden nodes had great effect on the
predictive result. Figure 6 shows the effect of hidden nodes.

ral rule, the higher coefficient and momentum will lead
to network instability. Figures 7 and 8 show the effect of
learning coefficient and momentum. When learning
coefficient and momentum arrived 0.1, the network mo-
dels had the highest degree of approximation. The
R.S.E. of training set decreased while the R.S.E. of mo-
nitoring set increased when learning coefficient and mo-
mentum exceeded 0.1, thus, the network appeared an
over fitting phenomenon. Here the curve of the degree
of approximation displayed its advantage again: it could
enlarge the relative standard error of the network ex-
pressly.

4. 3. 3. Selection of Number of Iterations

Number of iterations is very important for determi-
nability of network models. In Fig. 9 the degree of appro-
ximation and relative standard errors are determined by
the learning periods. The highest degree of approximation
was established when number of iterations reached 1700
iterations.

Figure 6. Effect of hidden nodes: (a) relative standard error of trai-

ning set; (b) relative standard error of monitoring set; (c) degree of

approximation.

Figure 8. Effect of momentum: (a) relative standard error of trai-

ning set; (b) relative standard error of monitoring set; (c) degree of

approximation.

Both curves a and b jumped obviously, and it was
difficult to determine the optimum hidden nodes from
them. Curve c represents the degree of approximation.
Constant number c in Eq. (16) was selected discretionary
for the adjustment of optimization. Therefore, the degree
of approximation had enlarged function. We could deter-
mine the optimum hidden neurons were 15 via the largest
degree of approximation.

4. 3. 2. Selection of Momentum and Learning
Coefficient

Learning coefficient and momentum affect the sta-
bility and convergence of the ANNs models. As a gene-

Figure 7. Effect of learning coefficient: (a) relative standard error

of training set; (b) relative standard error of monitoring set; (c) de-

gree of approximation.

Figure 9. Effect of number of iterations: (a) relative standard error

of training set; (b) relative standard error of monitoring set; (c) de-

gree of approximation.
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4. 3. 4. The ANN Models Design of Derivative
Pretreated Spectra and Evaluation

In order to compare the OPLS-ANN model, by us-
ing the same approach, the calibration models that use
first-derivative and second-derivative preprocessing spec-
tra were also designed. The selection of corresponding to-
pology parameters are shown in Table 2. When all net-
work parameters were optimized, the artificial network
had a high ability to predict samples. 

To evaluate the ANN models, the linear regression
equations of the reference concentration values and NIR
concentration values were established (Fig.10). The inter-
cept and slope represented the linearity degree of the refe-
rence concentration values and NIR concentration values.
The intercept, slope of regression equation and R (correla-
tion coefficient) are shown in Table 3. The RSE of training
set and monitoring set are also shown in Table 3.

We can see the OPLS-ANN model had the smallest
RSE and the best R. To further verify the reliability of
the network models, 24 samples of test set were prepa-
red. The optimal models were used to predict the con-
centrations of the active component. The results were li-
sted in Table 3, too. Because the testing set did not join
in training networks, so it had the highest RSE and the
lowest R compared with that of the training set and
monitoring set.

5. Conclusions

In this work, a new method that O-PLS combined
with artificial neural networks is introduced for non-de-
structive quantitative analysis of ebastine powder sam-
ples on NIR spectroscopy. Very satisfactory results were
obtained with the proposed method, and the application
of O-PLS presents interpretation of the spectral data. In
order to compare the OPLS-ANN model, other calibra-
tion models that using first-derivative and second-deriva-
tive pretreated spectra were also designed. On the basis
of the results, the ANN model that based on O-PLS met-
hod had the smallest RSE and best R. Therefore, the
OPLS-ANN model is the best.
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Povzetek
Predstavljena je nova metoda ortogonalne projekcije latentnih struktur (O-PLS) v povezavi z umetnimi nevronskimi

mre`ami za nedestruktivno dolo~anje ebastinovega pra{ka z NIR spektroskopijo. Spektralni podatki so bili po obdelavi

z O-PLS uporabljeni za dolo~itev modela ANN za ebastinov pra{ek, kjer je bila dolo~ena koncentracija ebastina kot ak-

tivne u~inkovine. Kot selektivni kriterij optimalnih parametrov mre`e je bila uporabljena stopnja aproksimacije. Za pri-

merjavo modela OPLS-ANN so bili izdelani kalibracijski modeli na osnovi prvih in drugih odvodov predprocesiranih

spektrov. Eksperimentalni rezultati so pokazali, da je OPLS-ANN model najbolj{i.


