Synthesis And Characterization of $\mathrm{Mo}(\mathrm{V})$-oxido Complexes Containing the Thiocyanato-N Ligand

Nives Kitanovski,* Amalija Golobič and Boris Čeh
University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1001 Ljubljana, Slovenia.
* Corresponding author: E-mail: nives.kitanovski@fkkt.uni-lj.si

Received: 17-09-2007
Dedicated to the memory of Professor Ljubo Golič

Abstract

$\left(\mathrm{P}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)_{2}\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right](\mathbf{1})$ crystallized after addition of $\left(\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)} \mathrm{Br}\right.$ to the mixture obtained by refluxing $(\mathrm{pyH})_{5}\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{3} \mathrm{Cl}_{2}$ (py = pyridine) and KSCN in acetonitrile, and also by oxidation of $\left((\gamma \text {-pic })_{2} \mathrm{H}\right)\left[\mathrm{Mo}(\mathrm{NCS})_{4}\right.$ $\left.(\gamma \text {-pic })_{2}\right]$ (pic = picoline) with Br_{2} in air. The oxidation of $\left((\gamma \text {-pic })_{2} \mathrm{H}\right)\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right]$ with a considerably lower concentration of Br_{2} in air gave $(\gamma \text { - } \mathrm{picH})_{6}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NCS}_{6}\right]\left(\mathrm{SO}_{4}\right)(\mathbf{2}) .\left(\mathrm{pyH}_{8}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{NCS}_{8}\right]_{4}(\mathrm{X}=\mathrm{Br}, \mathbf{3} ; \mathrm{X}=\mathrm{Cl}, \mathbf{4})\right.\right.\right.$ were isolated after addition of pyHX to the hydrolysis product of $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}$. The compounds were characterized by IR spectroscopy and single crystal X-ray diffraction analysis. The positions of the $v(\mathrm{CN})$ and $\delta(\mathrm{NCS})$ bands indicate N -bonding of the NCS groups and are in agreement with the crystal-structure results.

Keywords: Molybdenum(V), thiocyanato-N, crystal structures.

1. Introduction

This paper presents the preparation and the characterization of four thiocyanato- $\mathrm{N} \mathrm{Mo}(\mathrm{V})$ oxido coordination compounds with $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-},\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right]^{4}$ and $\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right]^{4-}$ ions, namely $\left.\left(\mathrm{P}_{6} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)_{2}[\mathrm{Mo}-$ $\left.\mathrm{O}(\mathrm{NCS})_{5}\right] \mathbf{1},(\gamma-\mathrm{picH})_{6}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NCS}_{6}\right]\left(\mathrm{SO}_{4}\right) 2(\right.$ pic $=$ picoline), and (pyH) ${ }_{8}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right] \mathrm{X}_{4}$ (py = pyridine) ($\mathrm{X}=\mathrm{Br} 3, \mathrm{X}=\mathrm{Cl} 4$). Coordination anions of these types are already known, $\mathrm{R}_{2}\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]\left(\mathrm{R}=\mathrm{pyH}^{+}, \alpha\right.$ - picH^{+}, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}^{+}, \mathrm{NH}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}{ }^{+}$, bzpyH ${ }^{+}$(bzpy $=$benzoylpyridine), lut ${ }^{+}$(lut $=$lutidine)), ${ }^{1,2} \quad\left(\mathrm{pyH}_{4}\right.$ $\left.\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right],{ }^{3,4} \mathrm{~K}_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O},{ }^{5}$ $\left.\left(\mathrm{NR}_{4}\right)_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right)\right] \cdot 2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right)\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right)^{6}$ and were obtained by different synthetic pathways than ours. The crystal structures of related complexes with $\left[\mathrm{MOX}_{5}\right]^{\mathrm{Z-}}$ species $\left(\mathrm{M}(\mathrm{IV})=\mathrm{Mo},{ }^{7,8} \mathrm{~V},{ }^{9} \mathrm{~W} ;{ }^{10} \mathrm{M}(\mathrm{V})=\mathrm{Mo},{ }^{11}\right.$ $\mathrm{Nb},{ }^{12-17} \mathrm{Re}^{4,18} \mathrm{~V},{ }^{19} \mathrm{~W} ;{ }^{18,20,21} \mathrm{M}(\mathrm{VI})=\mathrm{Re},{ }^{22} \mathrm{Ta}^{23}{ }^{23} \mathrm{~W} ;{ }^{24-27}$ $\mathrm{X}=\mathrm{F},{ }^{9,14,15,19,23,24} \mathrm{Cl},{ }^{11,16-18,20-22,25-27} \mathrm{Br},{ }^{21} \mathrm{CN},{ }^{7,8,10}$ $\left.\mathrm{NCS}^{4,13}\right)$ and $\left[\mathrm{Re}_{2} \mathrm{O}_{3}(\mathrm{NC})_{8}\right]^{4-, 28}$ were also reported in the literature. ${ }^{4}$

2. Experimental

All reagents and organic solvents, which were obtained from commercial sources, were of analytical grade quality and used without further purification. $(\mathrm{pyH})_{5}[\mathrm{MoO}$ $\left.\mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{3} \mathrm{Cl}_{2}$ was prepared as described previously, ${ }^{29}$ and $\left((\gamma \text {-pic })_{2} \mathrm{H}\right)\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma-\mathrm{pic})_{2}\right]$ by refluxing a mixture of $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{MoCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and KSCN in γ-picoline. The identity was checked by elemental (CHN) analysis, the powder diffraction technique ${ }^{4,30}$ and vibrational spectroscopy.

2. 1. Measurements

Elemental (CHN) analyses were performed on a Per-kin-Elmer 2400 CHN Elemental Analyzer. Infrared spectra were recorded as a nujol suspension on a Perkin-Elmer 1720-X FT-IR instrument in the $4000-400 \mathrm{~cm}^{-1}$ region and on a Perkin-Elmer 2000-FT-IR instrument in the $700-30 \mathrm{~cm}^{-1}$ region. X-ray powder diffraction data of the prepared starting materials, $(\mathrm{pyH})_{5}\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{3} \mathrm{Cl}_{2}$ and $\left((\gamma \text {-pic })_{2} \mathrm{H}\right)\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right]$, were obtained using
an Enraf Nonius FR 552 Guinier camera with $\mathrm{Cu} K_{\alpha}$ radiation.

2. 2. X-ray Structure Analysis

Diffraction data for all four compounds were collected on a Nonius Kappa CCD diffractometer at 293(2) K using graphite monochromated $\mathrm{Mo} K_{\alpha}$ radiation. The data were processed using the DENZO program. ${ }^{31}$ Structures were solved by direct methods using the SIR97 program. ${ }^{32}$ Structures were refined by full matrix least squares on F using Xtal3.6. ${ }^{33}$ The positions of hydrogen atoms for compound 3 were obtained from the difference Fourier map and were calculated regarding the expected geometry for compounds $\mathbf{1}, \mathbf{2}$, and $\mathbf{4}$. The parameters of hydrogen atoms were not refined. The structure of compound 2 is partially disordered (a non-coordinated sulfate anion and a picolinimu cation lying on the mirror plane). The resulting crystal data and details concerning data collection and refinement for all four compounds are quoted in Table 6 . The crystallographic data for compounds $\mathbf{1 - 4}$ were also deposited with the Cambridge Crystallographic Data Centre as supplementary material with the deposition numbers: CCDC 657899-657902, respectively. Copies of the data can be obtained free of charge via http://www. ccdc.cam.ac.uk/const/retrieving.html.

2. 3. Syntheses

$\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)_{2}\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]$ 1. Synthesis 1: A mixture of $\operatorname{KSCN}(5.0 \mathrm{~g}, 0.052 \mathrm{~mol})$ and $(\mathrm{pyH})_{5}\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{3} \mathrm{Cl}_{2}$ $(4.5 \mathrm{~g}, 3.3 \mathrm{mmol})$ in acetonitrile (45 mL) was refluxed for 3 hours. The solution was cooled down to room temperature and the resulting precipitate was filtered off. After addition of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{Br}(8.4 \mathrm{~g}, 0.020 \mathrm{~mol})$ to the red-brown filtrate (the filtrate was also used to obtain 3 and 4) micro crystals of $\mathbf{1}$ were isolated ($9.2 \mathrm{~g}, 8.5 \mathrm{mmol}, 85 \%$). Anal. Calcd. for $\mathrm{C}_{53} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{MoOP}_{2} \mathrm{~S}_{5}\left(M_{\mathrm{r}}=1081.16\right)$: C 58.88, H 3.73, N 6.48; Found: C 58.45, H 3.81, N 6.31. Single crystals were isolated as follows: 15 mL of filtrate containing $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}$ was diluted with 4 mL of acetonitrile and gradually cooled down to $6^{\circ} \mathrm{C}$. Orange prismatic crystals were obtained after 8 days ($432 \mathrm{mg}, 0.400$ $\mathrm{mmol}, 12.0 \%$). Synthesis $2: 28.4 \mathrm{~mL}$ of 0.040 M solution of $\mathrm{Br}_{2}(1.14 \mathrm{~mol})$ in acetonitrile was slowly added to 40 mL of the acetonitrile suspension of $\left((\gamma \text {-pic })_{2} \mathrm{H}\right)$ $\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma-\mathrm{pic})_{2}\right](800 \mathrm{mg}, 1.14 \mathrm{mmol})$. During reaction the suspension was cooled to $10{ }^{\circ} \mathrm{C}$. The red-brown solution was left at room temperature and the resulting precipitate was filtered. After addition of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{Br}$ $(2.00 \mathrm{~g}, 4.77 \mathrm{mmol})$ to the filtrate, and cooling down to $-20^{\circ} \mathrm{C}$, crystals suitable for X-ray analysis crystallized ($988 \mathrm{mg}, 0.914 \mathrm{mmol}, 80 \%$).
$(\gamma \text {-picH })_{6}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right]\left(\mathrm{SO}_{4}\right)$ 2. $\left((\gamma-\mathrm{pic})_{2} \mathrm{H}\right)[\mathrm{Mo}$ $\left.(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right](1.12 \mathrm{~g}, 1.60 \mathrm{mmol})$ was suspended in 5 mL of acetonitrile and 62.2 mL of a 0.015 M solution of
$\mathrm{Br}_{2}(0.933 \mathrm{mmol})$ in acetonitrile was gradually added at room temperature. The brown solution was left at room temperature for 5 days and the resulting precipitate was filtered. After 15 days single crystals appeared in the solution. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{12} \mathrm{Mo}_{2} \mathrm{O}_{11} \mathrm{~S}_{8}\left(M_{\mathrm{r}}=1339.23\right)$: C 37.67, H 3.16, N 12.55; Found: C 37.28, H 3.78, N 11.72.
$(\mathrm{pyH})_{8}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right] \mathrm{X}_{4}(\mathrm{X}=\mathrm{Br} 3, \mathrm{X}=\mathrm{Cl} 4)$. The redbrown filtrate, obtained in the synthesis of $\mathbf{1}$ was diluted with water (45 mL). pyHX (0.060 mol) was dissolved in the purple solution. After slow evaporation violet crystals with a green lustre, suitable for X-ray analysis, were obtained ($6.3 \mathrm{~g}, 3.8 \mathrm{mmol}, 75 \%$ 3; $6.1 \mathrm{~g} 4.1 \mathrm{mmol}, 82 \%$ 4). Anal. Calcd. for $3 \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~N}_{16} \mathrm{Mo}_{2} \mathrm{O}_{3} \mathrm{~S}_{8} \mathrm{Br}_{4}\left(M_{\mathrm{r}}=1665.05\right)$: C 34.63, H 2.91, N 13.46; Found: C 34.25, H 2.75, N 13.28. Anal. Calcd. for $4 \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~N}_{16} \mathrm{Mo}_{2} \mathrm{O}_{3} \mathrm{~S}_{8} \mathrm{BCl}_{4}\left(M_{\mathrm{r}}=\right.$ 487.24): C 38.77, H 3.25, N 15.07; Found: C 388.25, H 3.16, N 14.42 .

3. Results and Discussion

3. 1. Crystal Structures

The asymmetric unit of compound 1 consists of two $\left(\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)^{+} \text {cations and the molybdenum(V) complex an- }}\right.$ ion $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}$ (Figure 1). The coordination polyhedron of the $\mathrm{MoN}_{5} \mathrm{O}$ moiety is a distorted octahedron. The NCS moieties are nearly linear ($\mathrm{N}-\mathrm{C}-\mathrm{S}=177.6$ (11) $\left.-179.3(9)^{\circ}\right)$, while the equatorial NCS moieties are bent away from the oxygen atom, the average $\mathrm{O}-\mathrm{Mo}-\mathrm{N}$ angle being 95.8°. The axial Mo-N3 bond (2.209(14) \AA), trans to $\mathrm{Mo}-\mathrm{O}$ (the distance is $1.647(14) \AA$), is $0.153 \AA$ longer than the average bond length of the equatorial ones (2.056 \AA), due to the trans effect of the terminal oxygen atom (Table 1). A similar distortion was observed in the compound $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right)_{2}\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right] .{ }^{1}$

Figure 1. PLUTON -3^{34} drawing of the $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}$ anion.

Table 1. Bond distances $[\AA \AA]$ and selected angles [${ }^{\circ}$] for compound $\mathbf{1}$.

Mo-O	$1.647(14)$	Mo-N1	$2.053(14)$	Mo-N2	$2.066(15)$
Mo-N3	$2.209(14)$	Mo-N4	$2.058(8)$	Mo-N5	$2.048(7)$
N1-C1	$1.148(14)$	N2-C2	$1.144(15)$	N3-C3	$1.183(15)$
N4-C4	$1.142(9)$	N5-C5	$1.151(8)$	C1-S1	$1.614(14)$
C2-S2	$1.599(14)$	C3-S3	$1.591(14)$	C4-S4	$1.580(8)$
C5-S5	$1.591(8)$				
O-Mo-N1	$95.8(7)$	O-Mo-N2	$95.9(6)$	O-Mo-N3	$179.8(5)$
O-Mo-N4	$96.3(5)$	O-Mo-N5	$95.2(5)$	N1-Mo-N2	$168.3(7)$
N1-Mo-N3	$84.3(5)$	N1-Mo-N4	$89.7(4)$	N1-Mo-N5	$89.8(5)$
N2-Mo-N3	$84.0(5)$	N2-Mo-N4	$88.5(5)$	N2-Mo-N5	$89.7(4)$
N3-Mo-N4	$83.9(4)$	N3-Mo-N5	$84.6(4)$	N4-Mo-N5	$168.5(7)$
Mo-N1-C1	$176.3(9)$	Mo-N2-C2	$173.7(5)$	Mo-N3-C3	$174.2(5)$
Mo-N4-C4	$173.5(10)$	Mo-N5-C5	$170.1(10)$	N1-C1-S1	$177.6(11)$
N2-C2-S2	$179.1(7)$	N3-C3-S3	$179.0(9)$	N4-C4-S4	$178.3(11)$
N5-C5-S5	$179.3(9)$				

Table 2. Selected distances $[\AA]$ and angles [${ }^{\circ}$] for complex anion of $\mathbf{2}$.

Mo $\cdots \mathrm{Mo}^{\mathrm{i}}$	$3.6770(9)$	Mo-O1	$1.8709(19)$	Mo-O2	$1.649(10)$
Mo-O3	$2.195(9)$	Mo-N1	$2.101(6)$	Mo-N2	$2.125(9)$
O3-S3	$1.475(7)$	O4-S3	$1.436(9)$	N1-C1	$1.160(9)$
N2-C2	$1.142(12)$	C1-S1	$1.614(8)$	C2-S2	$1.620(9)$
Mo-O1-Mo	$158.6(6)$	O1-Mo-O2	$100.7(4)$	O1-Mo-O3	$84.1(3)$
O1-Mo-N1	$93.26(17)$	O1-Mo-N2	$164.9(4)$	O2-Mo-O3	$175.2(3)$
O2-Mo-N1	$95.5(2)$	O2-Mo-N2	$94.4(3)$	O3-Mo-N1	$84.2(2)$
O3-Mo-N2	$80.8(3)$	N1-Mo-N2	$85.24(19)$	N1-Mo-N1ii	$166.0(4)$
O3-S3-O4	$109.3(2)$	O3-S3-O3	$110.6(5)$	O4-S3-O4	$109.0(6)$
Mo-O3-S3	$142.5(7)$	Mo-N1-C1	$159.7(6)$	Mo-N2-C2	$175.4(9)$
N1-C1-S1	$179.6(7)$	N2-C2-S2	$179.6(10)$		

Symmetry operations: ${ }^{\text {i }} 1-x, 1-y, z ;{ }^{\text {ii }} 1-x, y, z$

Figure 2. PLUTON- 3^{34} drawing of the $\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right]^{4-}$ anion.

The structure of compound 2 consists of picolinium cations, sulfate and $\left.\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right)\right]^{4}$ anions (Figure 2). The asymmetric unit of compound $\mathbf{2}$ consists of one and a half picolinium cations (one lies on a mirror plane), a quarter of a sulfate anion (with mm symmetry) and a quarter of the $\left.\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right)\right]^{4}$ anion (which also has $m m$ symmetry). Mo, N2, C2, S2, S3, O2,

Table 3. Hydrogen bonds parameters ([\AA], $\left[^{\circ}\right]$), and angles [$\left.{ }^{\circ}\right]$ between the best planes of picoline-cation rings, for compound $\mathbf{2}$.

N3 \cdots O4	$3.060(10)$	N3-H1 \cdots O4	127.77
N3 \cdots O6	$2.70(2)$	N3-H1 \cdots O6	129.99
N3 \cdots O7	$2.94(2)$	N3-H1 \cdots O7	136.19
N4 \cdots O5	$2.563(9)$	N4-H2 \cdots O5	174.16
pic3 \cdots pic4	$73.8(2)$		

and O 3 lie on the first mirror plane, $01, \mathrm{O} 4$ and S 3 on the mirror plane perpendicular to the first one and S3 and O1 on the two fold axis on the intersection of the two mirror planes. Each of the two Mo atoms in binuclear $\left.\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right)\right]^{4}$ is coordinated by two oxido ligands (one terminal O 2 and one bridging O 1), three N atoms from three thiocyanato ligands, coordinated in mer mode, and one O atom (O 3) of the bridging sulfato anion, attached by two symmetry related O atoms to both Mo atoms. The selected bond lengths and angles are shown in Table 2. The Mo-O3 bond length (2.195(9) \AA) is lengthened as a result of trans influence of the terminal oxido ligand. A similar effect was also observed in the related compound with the pyridinium cation. ${ }^{3}$ The $\mathrm{Mo} \cdots \mathrm{Mo}^{\mathrm{i}}$ contact distance is $3.6770(9) \AA$ (Table 2). The structure is stabilized by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which connect both picolinium cations and O atoms of
coordinated and non-coordinated sulfate anions. N3 $\cdots \mathrm{O} 4, \mathrm{~N} 3 \cdots \mathrm{O} 6, \mathrm{~N} 3 \cdots \mathrm{O} 7$ and N4 $\ldots \mathrm{O} 5$ contact distances are $3.060(10), 2.79(2), 2.94(2)$ and 2.563(9) \AA, respectively (Table 3).

The compounds $\mathbf{3}$ and $\mathbf{4}$ are isostuctural. They both consist of binuclear complex anions $\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right]^{4-}$, pyridinium cations and halides, bromides in $\mathbf{3}$ and chlorides in 4. There is a distorted octahedral arrangement of two oxido ligands (one terminal O2 and one bridging O1) and four N -bonded thiocyanato ligands around the molybdenum atom. The bridging oxygen (O1) lies on a crystallographic inversion centre, so the $\mathrm{Mo}-\mathrm{O} 1-\mathrm{Mo}^{\mathrm{i}}$ unit is linear, and the terminal oxygen atoms $\left(\mathrm{O} 2, \mathrm{O} 2^{\mathrm{i}}\right)$ are in a trans position (Figure 3). The $\mathrm{Mo}-\mathrm{Mo}^{\mathrm{i}}$, $\mathrm{Mo}-\mathrm{O} 1$ and $\mathrm{Mo}-\mathrm{O} 2$ distances are 3.7153(5), 1.8577(4) and 1.664(4) \AA in 3 and $3.725(1), 1.8623(7)$ and $1.683(7) \AA$ in 4 (Table 4), and are similar to those found in other compounds containing the $\mathrm{Mo}_{2} \mathrm{O}_{3}$ moiety. ${ }^{5,6}$ The angle defined by $\mathrm{Mo}(\mathrm{V})$, bridging and terminal oxygens is $102.0(2)^{\circ}$ and 102.3(2) for 3 and 4, respectively. The NCS moieties are nearly linear, with the average $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angles of 179.3° for $\mathbf{3}$ and 178.9° for 4. As a result of the trans influence of the terminal oxido ligands, the Mo-N3 distance (2.254(4) A for 3, 2.276(8) \AA for 4) is significantly longer than the other $\mathrm{Mo}-\mathrm{N}$ distances, ranging from $2.081(5)$ to $2.117(5) \AA$ for 3 and 2.054(8) to 2.163(11) Å for 4. Very similar distances and angles were also observed in both related compounds. ${ }^{5,6}$ The crystal structure is completed with almost planar $(\mathrm{pyH})_{4} \mathrm{X}_{2}{ }^{2+}$ moieties ($D_{2 h}$ symmetry). Both halide anions from the asymmetric unit are connected by three hydro-
gen bonds to three neighbouring pyridinium cations. Two of the H -atoms are bridging and one is terminal (Figure 4). The shortest $\mathrm{Br} 1 \cdots \mathrm{Br} 2$ and $\mathrm{Cl} 1 \cdots \mathrm{Cl} 2$ contact distances are 4.2032(10) and 4.068(4), respectively. The N $\cdots \mathrm{X}$ distances range from $3.439(4)$ to $3.651(5) \AA$ for $3(\mathrm{~N} 11 \cdots \mathrm{Br} 2$ and $\mathrm{N} 11 \cdots \mathrm{Br}$) and 3.254(10) to $3.628(10) \AA$ for 4 (N11 $\cdots \mathrm{Cl} 2$ and $\mathrm{N} 11 \cdots \mathrm{Cl1}$), for bridging pyH^{+}, and from 3.187(6) to 3.234(6) Å for 3 (N21‥Br1 and N41‥Br2) and 3.033(10) to $3.099(14) \AA$ for $4(\mathrm{~N} 21 \cdots \mathrm{Cl} 1$ and $\mathrm{N} 41 \cdots \mathrm{Cl} 2)$, for nonbridging pyH^{+}, respectively (Table 5). The structure of both compounds consists of layers of complex anions separated by layers consisting of pyridinium-halide moieties. The layers are stacked along the c axis.

Figure 3. PLUTON- 3^{34} drawing of the $\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right]^{4-}$ anion.

Table 4. Selected distances $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ in $\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right]^{4-}$ for $\mathbf{3}$ and $\mathbf{4}$.

	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{3}$	$\mathbf{4}$
Mo $\cdots{ }^{\text {i }}$	$3.7153(5)$	$3.7245(10)$	Mo-O1	$1.8577(4)$	$1.8623(7)$
Mo-O2	$1.664(4)$	$1.683(7)$	Mo-N1	$2.094(5)$	$2.098(8)$
Mo-N2	$2.081(5)$	$2.054(8)$	Mo-N3	$2.254(4)$	$2.276(8)$
Mo-N4	$2.117(5)$	$2.163(11)$	N1-C1	$1.153(7)$	$1.139(13)$
N2-C2	$1.163(7)$	$1.144(13)$	N3-C3	$1.162(6)$	$1.157(12)$
N4-C4	$1.158(8)$	$1.116(15)$	C1-S1	$1.605(5)$	$1.613(10)$
C2-S2	$1.600(5)$	$1.636(11)$	C3-S3	$1.610(5)$	$1.588(9)$
C4-S4	$1.609(6)$	$1.608(11)$			
O1-Mo-O2	$101.97(16)$	$102.3(2)$	O1-Mo-N1	$90.27(13)$	$90.3(2)$
O1-Mo-N2	$91.91(13)$	$91.6(2)$	O1-Mo-N3	$84.37(12)$	$84.51(18)$
O1-Mo-N4	$164.45(15)$	$164.9(2)$	O2-Mo-N1	$95.32(19)$	$95.5(3)$
O2-Mo-N2	$95.3(2)$	$95.3(3)$	O2-Mo-N3	$173.6(2)$	$173.1(3)$
O2-Mo-N4	$93.5(2)$	$92.8(3)$	N1-Mo-N2	$168.44(18)$	$168.3(3)$
N1-Mo-N3	$83.77(16)$	$83.7(3)$	N1-Mo-N4	$86.6(2)$	$86.7(3)$
N2-Mo-N3	$85.15(17)$	$85.0(3)$	N2-Mo-N4	$88.3(2)$	$88.5(3)$
N3-Mo-N4	$80.15(19)$	$80.4(3)$	Mo-N1-C1	$175.1(4)$	$174.7(7)$
Mo-N2-C2	$172.9(4)$	$171.7(8)$	Mo-N3-C3	$173.1(4)$	$171.7(7)$
Mo-N4-C4	$164.7(5)$	$162.5(9)$	N1-C1-S1	$179.0(4)$	$178.7(8)$
N2-C2-S2	$179.7(4)$	$179.2(10)$	N3-C3-S3	$179.4(5)$	$179.0(8)$
N4-C4-S4	$179.0(4)$	$178.8(11)$			

[^0]

Figure 4. PLUTON- 3^{34} drawing of the $\left((\mathrm{pyH})_{4} \mathrm{X}_{2}\right)^{2+}$ moiety.

3. 2. Spectroscopy

For all four compounds $\mathbf{1 - 4}$, the positions and the widths of the CN broad bands within the $2150-1850 \mathrm{~cm}^{-1}$ region indicate N -bonding of the NCS ligands. ${ }^{35}$ The CN stretching band exhibits strong splitting for 1 (2096, 2034 cm^{-1}) and weak splitting for 3 (2067, $2036 \mathrm{~cm}^{-1}$) and 4 (2067, $2032 \mathrm{~cm}^{-1}$). No splitting could be observed in the spectrum of 2 . The strong band at about $950 \mathrm{~cm}^{-1}$ (956 $\mathrm{cm}^{-1} \mathbf{1}, 952 \mathrm{~cm}^{-1} \mathbf{3}, 950 \mathrm{~cm}^{-1} \mathbf{4}$), which can be assigned as $v(\mathrm{Mo}=\mathrm{O})$, is split in the spectrum of $2\left(947,935 \mathrm{~cm}^{-1}\right)$. In the spectra of $\mathbf{3}$ and $\mathbf{4}$, a strong band at about $745 \mathrm{~cm}^{-1}$ ($744 \mathrm{~cm}^{-1} 3,747 \mathrm{~cm}^{-1} 4$) is observed (Figure 5). Since that vibration is absent in the spectra of $\mathbf{2}$ it can be assigned as the asymmetrical stretching vibration of the linear Mo-O-Mo unit. The linearity of Mo-O-Mo causes the absence of the band characteristic of the symmetrical

Table 5. Hydrogen bonds parameters ([\AA], $\left.\left[{ }^{\circ}\right]\right)$, and angles $\left[{ }^{\circ}\right]$ between the best planes of pyridine-cation rings, for compounds 3 and 4.

	$\mathbf{3}$	$\mathbf{4}$		$\mathbf{3}$	$\mathbf{4}$
N11 $\cdots \mathrm{X} 1$	$3.651(5)$	$3.628(10)$	$\mathrm{N} 11-\mathrm{H} \cdots \mathrm{X} 1$	133.79	123.43
$\mathrm{~N} 11 \cdots \mathrm{X} 2$	$3.439(4)$	$3.254(10)$	$\mathrm{N} 11-\mathrm{H} \cdots \mathrm{X} 2$	130.51	140.36
$\mathrm{~N} 21 \cdots \mathrm{X} 1$	$3.234(7)$	$3.099(14)$	$\mathrm{N} 21-\mathrm{H} \cdots \mathrm{X} 1$	157.38	164.38
$\mathrm{~N} 31 \cdots \mathrm{X} 1$	$3.499(6)$	$3.283(13)$	$\mathrm{N} 31-\mathrm{H} \cdots \mathrm{X} 1$	127.98	140.16
$\mathrm{~N} 31 \cdots \mathrm{X} 2$	$3.580(7)$	$3.507(13)$	$\mathrm{N} 31-\mathrm{H} \cdots \mathrm{X} 2$	135.48	121.34
$\mathrm{~N} 41 \cdots \mathrm{X} 2$	$3.187(6)$	$3.033(10)$	$\mathrm{N} 41-\mathrm{H} \cdots \mathrm{X} 2$	170.27	173.91
py11 \cdots py21	$15.5(4)$	$19.2(8)$	py11-py31	$6.4(4)$	$8.2(7)$
py11 \cdots py41	$21.6(4)$	$20.9(7)$	py21-py31	$9.1(4)$	$11.1(8)$
py21	py41	$9.0(4)$	$9.4(8)$	py31-py41	$15.6(4)$

Table 6. Crystal data, data collection and structure refinement parameters for 1-4.

	Compound 1	Compound 2	Compound 3	Compound 4
Formula	$\mathrm{C}_{53} \mathrm{H}_{40} \mathrm{MoN}_{5} \mathrm{OP}_{2} \mathrm{~S}_{5}$	$\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Mo}_{2} \mathrm{~N}_{12} \mathrm{O}_{11} \mathrm{~S}_{8}$	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{Br}_{4} \mathrm{Mo}_{2} \mathrm{~N}_{16} \mathrm{O}_{3} \mathrm{~S}_{8}$	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{Cl}_{4} \mathrm{Mo}_{2} \mathrm{~N}_{16} \mathrm{O}_{3} \mathrm{~S}_{8}$
M_{r}	1081.16	1345.32	1665.04	1487.24
Crystal system	monoclinic	orthorhombic	triclinic	triclinic
Space group	Pn, No. 7	Fmm2, No. 42	$P-1$, No. 2	$P-1$, No. 2
$a(\AA)$	12.3714(1)	18.8567(3)	11.5832(1)	11.6406(4)
b (A)	18.6921(2)	20.5554(4)	12.2379(2)	11.8869(5)
c (${ }^{\text {(}}$)	12.9422(1)	14.9393(2)	13.0981(2)	13.1693(6)
$\alpha\left({ }^{\circ}\right)$	90.00	90.00	90.9887(6)	91.5398(1)
$\beta\left({ }^{\circ}\right)$	116.5226(5)	90.00	109.9001(6)	110.1910(2)
$\gamma\left({ }^{\circ}\right)$	90.00	90.00	104.1873(6)	104.2451(2)
$V\left(\AA^{3}\right)$	2677.88(4)	5790.58(16)	1682.24(4)	1645.11(12)
Z	2	4	1	1
Color, shape	orange, prism	red, plate	violet, prism	violet, plate
$\rho\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.341	1.543	1.644	1.501
Total refl.	57282	26457	36626	23841
$R_{\text {int }}$	0.045	0.049	0.038	0.089
Independ. refl.	6036	1827	7652	7130
Observed refl.	5524	1623	5574	3007
Final R and $R_{\text {w }}$	0.042, 0.031	0.059, 0.041	0.042, 0.043	0.064, 0.042
Contribut. refl.	5885	1776	6878	5209
Parameters	604	154	367	367
$\Delta \rho_{\text {max }{ }^{\text {min }}}\left(\mathrm{e} \AA^{-3}\right)$	0.411, -0.559	1.238, -1.823	0.976, -1.058	1.101, -1.354

stretching vibration of Mo-O-Mo at about $400 \mathrm{~cm}^{-1}$, which is IR active only in the case of a nonlinear Mo-O-Mo bridge, and is therefore observed only in the spectrum of 2 at $414 \mathrm{~cm}^{-1} .{ }^{36}$ The N-bonding of NCS in compound $\mathbf{1}$ is also indicated by the $\delta(\mathrm{NCS})$ vibration at $481 \mathrm{~cm}^{-1}$ (Figure 5). ${ }^{35}$ Due to possible overlap with the bending vibration of the $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ unit in $\mathbf{2 - 4}$, ${ }^{36}$ and one of the bending vibrations of the bidentately bonded sulfate $\left(\delta_{\mathrm{d}(1)}\left(\mathrm{SO}_{4}\right)\right)$ in $2,{ }^{37}$ the $\delta(\mathrm{NCS})$ band cannot be unambiguously assigned for all three dinuclear compounds. Nevertheless, for $\left.\left(\mathrm{NR}_{4}\right)_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right)\right]$ $2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right)\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right)^{6}$ the medium intensity band at about $480 \mathrm{~cm}^{-1}\left(480 \mathrm{~cm}^{-1}\right.$ for $\mathrm{R}=\mathrm{CH}_{3}$ and $482 \mathrm{~cm}^{-1}$ for $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$) is assigned as a $\delta(\mathrm{NCS})$ band. For 3 and 4 a vibration at $485 \mathrm{~cm}^{-1}$ was noticed. The widest and the most intensive band within the $350-250 \mathrm{~cm}^{-1}$ region for 1 and $320-240$ for $\mathbf{2 - 4}$, which exhibits splitting for $\mathbf{2}$, can be as-
signed as the $\mathrm{Mo}-\mathrm{N}(\mathrm{NCS})$ stretching vibration (Figure 5). ${ }^{35,38}$ The bands at $1587,1188,1162,1108,998,752$, $689,616,528 \mathrm{~cm}^{-1}$ probably belong to the vibrations of the tetraphenylephosphonium cation in $\mathbf{1}$. The typical absorption for pyridinium around $1525 \mathrm{~cm}^{-1}$ is observed in spectra of $\mathbf{3}$ and $\mathbf{4}$, at 1523 and $1525 \mathrm{~cm}^{-1}$, respectively. ${ }^{39}$

4. Conclusions

In the prepared oxido compounds of $\mathrm{Mo}(\mathrm{V})$, the octahedrally coordinated species $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}(\mathbf{1}),\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\right.$ $\left.\left.\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right)\right]^{4-}(\mathbf{2})$, and $\left.\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right)\right]^{4-}(\mathbf{3}, 4)$, were identified. In the dinuclear units two molybdenum atoms are connected by the μ-oxido bridge in $\mathbf{3}$ and $\mathbf{4}$, and in the case of 2 also by the sulfato bridge. The X-ray diffraction analyses reveal that the NCS groups are bonded to the Mo

Figure 5. Vibration spectra of the compounds 1, 2, and 3, within the range 2150-560 and 560-180 cm^{-1}. The spectra of 4 reveals identical bands as 3, since their coordination spheres are similar.
atom via nitrogen atoms in all four compounds. The results of vibrational spectroscopy are in agreement with the Mo-N bonding, and spectra of $\mathbf{3}$ and $\mathbf{4}$ reveal identical bands, since their coordination spheres are similar.
$\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}$ was prepared from $\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$by the substitution of four chlorido ligands and water molecules with thiocyanato-N ligands, and also by the oxidation of $\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right]^{-}$with bromine. We did not succeed in
obtaining higher yields of compound $\mathbf{2}$. We believe the formation of the species $\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right]^{4-}$ could be the result of combined oxidation of $\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right]^{-}$by bromine as well as oxygen (formation of $\mathrm{SO}_{4}{ }^{2-}$ from NCS^{-}). Also, in the literature, the formation of this anion is in not clearly described. ${ }^{3}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right]^{4-}$ is photosensitive in $\mathrm{CH}_{3} \mathrm{CN}$, the purple solution becomes orange under ambient light, the photolysis product being $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-6}$.

[^1]
5. Acknowledgements

The financial support of the Ministry of Higher Education, Science and Technology, Republic of Slovenia, through grants MVZT P1-0175, P1-0201 and X-2000, is gratefully acknowledged.

6. References

1. W. Clegg, Acta Crystallogr., C, 1987, 43, 791-792.
2. S-O. Oh, C-S. Kim, J. Kor. Chem. Soc., 1981, 25, 263-269.
3. B. Kamenar, M. Cindrić, N. Strukan, Acta Crystallogr., C, 1994, 50, 1396-1399.
4. F. H. Allen, O. Kennard, Chem. Des. Autom. News, 1993, 8, 31-37.
5. A. Bino, S. Cohen, L. Tsimering, Inorg. Chim. Acta, 1983, 77, L79-L80.
6. P. C. Secrest, S. J. Geib, N. J. Cooper, Inorg. Chem., 1997, 36, 4182-4186.
7. K. Wieghardt, G. Backes-Dahmann, W. Holzbach, W. J. Swiridoff, J. Weiss, Z. Anorg. Allg. Chem., 1983, 499, 44-58.
8. H. Arzoumanian, M. Pierrot, F. Ridouane, J. Sanchez, Transition Met. Chem., 1991, 16, 422-426.
9. A. Demšar, P. Bukovec, Vestn. Slov. Kem. Drus., 1979, 26, 401-406C.
10. J. Szklarzewicz, D. Matoga, A. Samotus, J. Burgess, J. Fawcett, D. R. Russell, Croat. Chem. Acta., 2001, 74, 529-544.
11. P. C. Junk, J. L. Atwood, J. Coord. Chem., 1999, 46, 505518.
12. J. Lipkovski, G. D. Andreetti, P. Sgarabotto, Acta Crystallogr., A, 1978, 34, 145.
13. B. Kamenar, C. K. Prout, J. Chem. Soc. A, 1970, 2379-2384.
14. R. Stomberg, I. B. Svensson, L. Trysberg, Acta Chem. Scand. A, 1981, 35, 779-784.
15. U. Calov, M. Schneider, P. Leibnitz, Z. Anorg. Allg. Chem., 1991, 604, 77-83.
16. J. Poitras, A. L. Beauchamp, Can. J. Chem., 1996, 72, 1675-1683.
17. U. Muller, I. Lorenz, Z. Anorg. Allg. Chem., 1980, 463, 110-116.
18. W. Massa, S. Hermann, K. Dehnicke, Z. Naturforsch., B, 1984, 39, 850-854.
19. H. Rieskamp, R. Mattes, K. Dehnicke, Z. Naturforsch., B, 1976, 31, 453-1455.
20. P. Schreiber, K. Wieghardt, U. Florke, H. J. Haupt, Z Naturforsch., B, 1984, 42, 1391-1397.
21. P. Hofacker, A. Werth, A. Neuhaus, B. Neumuller, F. Weller, K. Dehnicke, D. Fenske, Chem. Zeit., 1991, 115, 321-325.
22. U. Lis, B. Jezowska-Trzebiatowska, Acta Crystallogr., B, 1995, 33, 1248-1250.
23. N. G. Furmanova, I. A. Verin, I. E. Zanin, A. N. Zozulin, E. G. Ilin, Kristallografiya, 1991, 36, 384-388.
24. W. Massa, S. Hermann, K. Dehnicke, Z. Anorg. Allg. Chem., 1982, 493, 33-40.
25. L. Ying-Jie, R. H. Beer, Polyhedron, 1996, 15, 1667-1671.
26. P. C. Junk, J. L. Atwood, J. Chem. Soc., Dalton Trans., 1995, 1551-1552.
27. P. C. Junk, J. L. Atwood, J. Chem. Soc., Dalton Trans., 1997, 4393-4399.
28. P. Lumme, U. Turpeinen, Z. Stasička, Acta Crystallogr., C, 1991, 47, 501-503.
29. B. Modec, J. V. Brenčič, Eur. J. Inorg. Chem. 2005, 16981709.
30. X'PERT HIGHSCORE PANalitical B. V. Almelo, (The Netherlands) 2005.
31. Z. Otwinowski, W. Minor, Methods in Enzymology, Vol. 276, Macromolecular Crytallography, Part A (Eds.: C. W. Carter Jr., R. M. Sweet), Academic Press, New York 1997, pp. 307326.
32. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, SIR97, J. Appl. Crystallogr., 1999, 32, 115-119.
33. S. R. Hall, D. J. du Boulay, and R. Olthof-Hazekamp (Eds.), Tha XTAL3.6 System, University of Western Australia, Lamb, Perth (Australia), 1999
34. A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Ultrecht (The Netherlands) 2000. A. L. Spek, J.Appl. Crystallogr. 2003, 36, 7-13.
35. N. Kitanovski, A. Golobič, B. Čeh, Croat. Chem. Acta, 2004, 77, 593-598.
36. K. Nakamoto, Infrared and Raman Rpectra of Rnorganic and Roordination Rompounds, J. Wiley and Sons, New York, 1997.
37. K. Nakamoto, J, Fujita, S. Tanaka, M. Kobayashi, J. Am. Chem. Soc., 1957, 79, 4904-4908.
38. A. Sabatini, I. Bertini, Inorg. Chem., 1965, 4, 959-961.
39. N. S. Gill, R. H. Nuttall, D. E. Scaife, D. W. Sharp, J. Inorg. Nucl. Chem., 1961, 18, 79-87.

Povzetek

Po dodatku $\left(\mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)}\right)$) Br v filtrat, ki nastane pri refluksu $(\mathrm{pyH})_{5}\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{3} \mathrm{Cl}_{2}$ (py = piridin) in KSCN v acetonitrilu, izkristalizira $\left(\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)_{2}\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right](\mathbf{1}) \text {, ki nastane tudi pri oksidaciji }\left((\gamma-\mathrm{pic})_{2} \mathrm{H}\right)\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right](\text { pic }=\text { pi- }}\right.$ kolin) z bromom na zraku. Oksidacija $\left((\gamma \text {-pic })_{2} \mathrm{H}\right)\left[\mathrm{Mo}(\mathrm{NCS})_{4}(\gamma \text {-pic })_{2}\right]$ z nižjo koncentracijo broma, ki prav tako poteka v prisotnosti zraka, vodi tudi do nastanka $(\gamma-\text { picH })_{6}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)(\mathrm{NCS})_{6}\right]\left(\mathrm{SO}_{4}\right)(2) .(\mathrm{pyH})_{8}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}(\mathrm{NCS})_{8}\right] \mathrm{X}_{4}(\mathrm{X}=\mathrm{Br}, \mathbf{3}$; $\mathrm{X}=\mathrm{Cl}, 4)$ se izloči po dodatku pyHX v raztopino nastalo pri hidrolizi $\left[\mathrm{MoO}(\mathrm{NCS})_{5}\right]^{2-}$. Spojine smo okarakterizirali z IR spektroskopijo ter rentgensko difracijsko analizo monokristalov. Položaja $v(\mathrm{CN})$ in $\delta(\mathrm{NCS})$ trakov kažeta na N-vezavo NCS skupine, kar potrdijo tudi rezultati rentgenske difrakcije.

[^0]: Symmetry operation: ${ }^{\text {i }}-x, 1-y, 1-z$

[^1]: Scheme 1. Scheme of the syntheses.

