Scientific paper

Flux Syntheses and Crystal Structures of New Compounds With Decorated Kröhnkite-like Chains

Maria Wierzbicka-Wieczorek,^a* Uwe Kolitsch^b and Ekkehart Tillmanns^a

^a Institute of Mineralogy and Crystallography, University of Vienna, Geocentre, Althanstr. 14, A-1090 Vienna, Austria

^b Department of Mineralogy and Petrography, Natural History Museum Vienna, Burging 7, A-1010 Vienna, Austria

* Corresponding author: E-mail: maria.wierzbicka @univie.ac.at

Received: 15-04-2008

Dedicated to the memory of Professor Ljubo Golič

Abstract

The crystal structures of two novel compounds, $\text{KSr}_6\text{Sc}(\text{SiO}_4)_4$ and $\text{Rb}_5\text{In}(\text{MOO}_4)_4$, were determined from single-crystal X-ray diffraction data collected at room temperature. Both compounds have been synthesised by the flux growth technique in the course of a research project on new micro- and nanoporous alkali- M^{3+} silicates. $\text{KSr}_6\text{Sc}(\text{SiO}_4)_4$ represents a new structure type and the first silicate containing decorated kröhnkite-like octahedral-tetrahedral chains. It is orthorhombic and crystallises in *Pnma*, with *a* = 19.137(4), *b* = 11.197(2), *c* = 7.125(1) Å, *V* = 1526.7(5) Å^3, *Z* = 8. Rb₅In(MoO₄)_4 has space group *P2/c* with *a* = 11.391(2), *b* = 7.983(2), *c* = 11.100(2) Å, = 113.74(3)°, *V* = 924.0(3) Å^3, *Z* = 2. It is isotypic with Rb₅Er(MoO₄)_4. The topologies of both compounds are characterised by isolated infinite decorated kröhnkite-like chains that are built from either ScO₆ or InO₆ octahedra corner-linked and decorated by SiO₄ or Mo-O₄ tetrahedra. These chains are separated by alkali or alkaline earth metals. A detailed comparison to the few other compounds based on decorated kröhnkite-like chains, *viz*. Ba₂Ca(HPO₄)₂(H₂PO₄)₂, Cs $M^{3+}(\text{H}_{1.5}\text{AsO}_4)_2(\text{H}_2\text{AsO}_4)$ ($M^{3+} = \text{Ga}$, In) and K₅In(MOO₄)₄ is given.

Keywords: Decorated kröhnkite-like chains, rubidium indium molybdate, strontium potassium scandium silicate, flux growth, single-crystal X-ray diffraction

1. Introduction

Kröhnkite-type chains (Figure 1) are infinite isolated octahedral-tetrahedral chains formed from the ladderlike corner-linkage of MO_6 octahedra and XO_4 tetrahedra. They are named after the mineral kröhnkite, $Na_2Cu(SO_4)_2$ \cdot 2H₂O, in which this type of chain was first described.¹ Kröhnkite-type chains are encountered in a large number of natural and synthetic compounds in different orientations and topological arrangements. Fleck, Kolitsch and coworkers provide a detailed classification and reviews of all compounds containing kröhnkite-type or kröhnkitelike chains (the latter are topologically very similar to, but not identical to kröhnkite-type chains sensu strictu), and decorated variants of the latter (the two 'free' apices of the MO_6 octahedra are further decorated with one or two XO_4 tetrahedra; only very few examples of such variants are known).²⁻⁶ The mentioned classification encompasses

Figure 1. Kröhnkite-type octahedral-tetrahedral chain in kröhnkite, $Na_2Cu(SO_4)_2 \cdot 2H_2O$.

(generally hydrated) XO_4 oxysalts, where $X = P^{5+}$, As^{5+} , S^{6+} , Se^{6+} , Cr^{6+} , Mo^{6+} , W^{6+} .

During a systematic research for new micro- and nanoporous silicates in the system $M^{1+}-(M^{2+}-)M^{3+}-Si-O$ $(M^{1+} = Na, K, Rb, Cs; M^{2+} = Sr, Ba; M^{3+} = Sc, V, Cr, Fe,$ In, Y, Yb, Gd) with the help of high-temperature flux growth syntheses, two novel compounds containing decorated kröhnkite-like chains, $KSr_6Sc(SiO_4)_4$ and Rb_5In $(MoO_4)_4$, were grown from molybdate-based flux solvents.^{7,8} During this research project, more than 30 new crystalline compounds (including isotypic compounds)

with 12 novel structure types have been studied in detail by single-crystal X-ray diffraction methods, supplemented by chemical analyses and Raman spectroscopy. The following novel silicates are described and summarised in a PhD Thesis completed at the University of Vienna⁷: Ba-KREESi₂O₇ (REE = $Y_{2}^{9,10}$ Yb, Sc) and isotypic SrKSc- Si_2O_7 (P2₁/n), with the three structurally related compounds BaNaScSi₂O₇ ($P2_1/m$), BaKYbSi₂O₇ (Cc) and isotypic SrKScSi₂ O_7 , BaY₂Si₃O₁₀ (P2₁/m)^{11,12} and isotypic $BaREE_2Si_3O_{10}$ (REE = Gd, Er, Yb, Sc), triclinic Sr- $Y_{2}Si_{3}O_{10} (P\overline{1})^{12} BaRbScSi_{3}O_{9} (P2_{1}/c)^{13,14} BaY_{4}Si_{5}O_{17}$ and isotypic SrREE₄Si₅O₁₇ (REE = Yb, Sc) $(P2_1/m)$, $Ba_2Gd_2Si_4O_{13} (C2/c)$, ^{14,16} (M¹⁺)₉REE₇Si₂₄O₆₃ (REE = Yb, Y; $M^{1+} = K$, Rb, Cs) ($R\overline{3}$), Na₄Sr₂REE₂(Si₂O₇)(SiO₄)₂ $(\text{REE} = \text{Y}, \text{In}, \text{Sc}) (P2_1/c),^{17} \text{Ba}_{5.2} \text{REE}_{13} \text{Si}_8 \text{O}_{41} (\text{REE} = \text{Y}, \text{In}, \text{Sc})$ Ho) $(I\overline{4}2m)$ and, finally, Cs₂REESi₂O₁₀ (REE = Y, ⁹ Yb) (Pnma) and isotypic Rb₃YSi₈O₁₉.

The flux syntheses also yielded several, partly new molybdates as reaction by-products, e.g., novel Rb_5Fe $(MoO_4)_4$, ¹⁸ $K_5Y(MoO_4)_4$, $RbFe(MoO_4)_2$ and isotypic $Rb-Sc(MoO_4)_2$, and $Rb_2Mo_4O_{13}$ (isotypic with the triclinic modification of $K_2Mo_4O_{13}$).⁸

In the present paper we report the syntheses and the crystal structures (determined from single-crystal X-ray diffraction data) of $KSr_6Sc(SiO_4)_4$ and $Rb_5In(MoO_4)_4$, and we discuss and compare the decorated kröhnkite-like chains in their atomic arrangements with those of all other presently known compounds containing such chains.

2. Experimental

2. 1. Syntheses

The flux growth experiments were conducted in a Naber high-temperature furnace in air using platinum crucibles at $T_{\text{max}} = 1150$ °C. Small, colourless, pseudo-tetragonal prisms of $KSr_6Sc(SiO_4)_4$ were grown from a MoO₃ flux containing dissolved reagent-grade starting materials of K, Sr, Sc and Si (experimental parameters: 1.0014 g K₂CO₃, 1.0001 g Sr(OH)₂·8H₂O, 0.1245 g Sc₂O₃, 0.2118 g SiO_3 , 1.0010 g MoO₃). The Pt crucible filled with an intimate mixture of the starting materials was heated up during 12 h to 1150 °C, followed by a holding time of 3 h, and cooling during 125 h (2 K/h) to 900 °C, at which point the furnace was switched off. The reaction products were washed in distilled water, filtered and dried in air. This synthesis yielded three other reaction products, namely pseudo-octahedral crystals of SrKScSi₂O₇ (Cc), which is isotypic to BaKYbSi₂O₇, small colourless pseudohexagonal plates of SrKScSi₂O₇, which is isotypic to BaKYSi₂O₇ and Sr₃(Si₃O₉).

Small colourless prisms of $Rb_5In(MoO_4)_4$ were obtained as a by-product during a flux growth experiment for which the following starting mixture of reagent-grade starting material was used: 1.5004 g RbF, 0.1824 g In_2O_3 , 0.1019 g SiO₂ and 1.7733 g MoO₃. The used temperature programme was: heating up during 4 h to 1150 °C, holding time 3 h, cooling for 166.6 h (1.2 K/h) to 900 °C, after which the furnace was switched off. The crystals were accompanied only by one additional phase, In_2O_3 .

2. 2. Data Collection and Structure Solution

The crystal structures of $KSr_6Sc(SiO_4)_4$ and $Rb_5In(MoO_4)_4$ were determined from single-crystal X-ray diffraction data obtained from selected crystal fragments of good diffracting quality. Measurements were made with a Nonius KappaCCD four-circle X-ray diffractometer, equipped with a capillary optics collimator (for further details on data collection strategies and data processing see Table 1). The intensity data were processed with the Nonius program suite DENZO-SMN¹⁹ and corrected for Lorentz, polarization and background effects. Absorption was corrected according to the multi-scan method.¹⁹ The program SHELXS-97 was used for the solution of the crystal structures, employing direct methods. The structure

Table 1. Crystal data, data collection information and refinement details for $KSr_6Sc(SiO_4)_4$ and $Rb_5In(MoO_4)_4$.

	KSr ₆ Sc(SiO ₄) ₄	Rb ₅ In(MoO ₄) ₄
Space group	Pnma	P2/c
Crystal size (mm ³)	$0.02 \times 0.03 \times 0.04$	$0.08 \times 0.10 \times 0.17$
a (Å)	19.137(4)	11.391(2)
<i>b</i> (Å)	11.197(2)	7.983(2)
<i>c</i> (Å)	7.125(1)	11.100(2)
β (°)	90	113.74(3)
$V(Å^3)$	1526.7(5)	924.0(3)
Z	8	2
F (000)	1808	1060
$\rho_{\rm calc} ({\rm g/cm^3})$	4.255	4.248
$\mu (\text{mm}^{-1})$	21.895	17.025
Crystal-detector	34	30
distance (mm)		
$2\theta_{\max}$ (°), T (K)	60, 293	70, 293
Rotation width (°)	1.5	2
Frames	564	519
Time per frame (s)	400	50
	-26/26,	-15/15,
h, k, l ranges	-10/10,	-18/18,
	-12/12,	-17/17
Total refls. measured	4240	7876
Unique reflections	2334	4054
	$(R_{\rm int} 3.14\%)$	$(R_{\rm int} \ 1.56\%)$
'Observed' refls.*	1863	3697
Variables	146	120
$R1(F)$, $wR2_{all}(F^2)$	3.54, 7.95%	2.27, 5.72%
Extinct. coefficient	0.00009(4)	0.00549(16)
GooF	1.172	1.052
$(\Delta/\sigma)_{\rm max}$	0.001	0.001
$\Delta \rho_{\min}, \Delta \rho_{\max} (e/Å^3)$	-1.18, 1.86	-1.80, 1.62
a, b**	0.025, 9.6	0.03, 0.9

 $F_{o} > 4\sigma(F_{o})$

^{**} $w = 1/[\sigma^2(F_o^2) + (a \times P^2 + b \times P]; P = [max(0, F_o^2) + 2 \times F_c^2]/3$

Wieczorek et al.: Flux Syntheses and Crystal Structures ...

models were refined by standard full-matrix least-squares techniques on F^2 using SHELXL-97.²⁰

For the final refinement step of the structure model of $Rb_5In(MoO_4)_4$, the atomic coordinates of isotypic $Rb_5Er(MoO_4)_4$ were used as a starting model.²¹

The final cycles of least-squares refinement for $KSr_6Sc(SiO_4)_4$ gave the residuals R1(F) = 3.55% and $wR2_{all}(F^2) = 7.97\%$ using 1863 reflections with $F_0 >$ $4\sigma(F_0)$ and 146 parameters. For Rb₅In(MoO₄)₄ the residuals are: R1(F) = 2.27%, w $R2_{all}(F^2) = 5.72\%$ for 3697 reflections with $F_0 > 4\sigma(F_0)$ and 120 parameters (see Table 1). The final difference Fourier maps were fairly smooth and showed a minimum of -1.18 e/Å³ (Sr position) and a maximum of 1.86 e/Å³ (close to the K position) for $KSr_6Sc(SiO_4)_4$. Corresponding values for $Rb_5In(MoO_4)_4$ were -1.80 and 1.62 e/Å³, respectively (both close to Rb positions). The final positional and displacement parameters of KSr₆Sc(SiO₄)₄ and Rb₅In(Mo- O_{A} are given in Tables 2 and 5. Anisotropic displacement parameters are listed in Tables 3 and 6. Selected interatomic distances and calculated bond-valence sums (v.u.) for the coordination polyhedra are presented in Tables 4 and 7. All figures were drawn using the program ATOMS 5.1 version.22

3. Results and Discussion

3. 1. Crystal Structures and Topologies

3. 1. 1. $KSr_6Sc(SiO_4)_4$

 $\text{KSr}_6\text{Sc}(\text{SiO}_4)_4$ represents a novel structure type, the first K–Sr–Sc silicate and the first silicate with decorated kröhnkite-like octahedral-tetrahedral chains.

Other reported scandium silicates containing alkali and/or alkaline earth cations comprise $K_2Sc(Si_2O_6)$,²³ $K_2ScF(Si_4O_{10})$,²⁴ $K_3Sc(Si_2O_7)$,²⁵ $Ba_9Sc_2(SiO_4)_6$,²⁶ as well

Figure 2. View of $KSr_6Sc(SiO_4)_4$ along [001], and perpendicular to the decorated kröhnkite-like octahedral-tetrahedral chains (in the central part of the figure, Sr atoms have been omitted in order to show the SiO₄ tetrahedra more clearly).

Figure 3. The structure of $KSr_6Sc(SiO_4)_4$ projected along [010], i.e., parallel to the isolated decorated kröhnkite-like octahedral-te-trahedral chains.

as the above mentioned six compounds $BaKScSi_2O_7$, $BaNaScSi_2O_7$, $BaSc_2Si_3O_{10}$, $BaRbScSi_3O_9$, $SrSc_4Si_5O_{17}$, $Na_4Sr_2Sc_2(Si_2O_7)(SiO_4)_2$. None of these compounds shows a close structural relation to $KSr_6Sc(SiO_4)_4$.

The new structure type of $KSr_6Sc(SiO_4)_4$ (Figures 2, 3) contains one octahedrally coordinated Sc site, three crystallographically non-equivalent SiO₄ tetrahedra, and five Sr sites, three of which are occupied by a mixture of Sr and K atoms (one with K > Sr) (Table 2). The majority of these sites are located on mirror planes in $y = \frac{1}{4}$. The ScO₆ octahedra share all of their oxygen corners with SiO₄ tetrahedra, forming isolated decorated octahedral-tetrahedral chains running parallel to [010], i.e., decorated kröhnkite-like chains (see Figure 2). The Sr/K atoms are located between these chains. The [8]- or [9]-coordinated Sr atoms have average Sr-O bond lengths of 2.61, 2.73 and 2.74 Å (Table 4). The average K-O bond length of the [8+2]-coordinated K atom is 2.87 Å. The average Si-O bond lengths lie within a small range from 1.62 to 1.64 Å. The isolated ScO₆ octahedron is only slightly distorted, with O-Sc-O bond angles ranging between 83.14° and 94.48 and between 170.9 and 177.58°. The average Sc-O bond length (2.10 Å) corresponds very well with literature values for oxidic Sc compounds (2.10 Å).²⁷ The bond-valence sums (BVSs) of Si atoms range between 3.86 and 4.02 v.u. (valence units). The BVSs for the Sr1 (1.84 v.u.), Sr2 (2.14 v.u.) and Sr3 (1.77 v.u.) atoms are close to the theoretical value.

In contrast, BVSs for the Sr4 (1.61 v.u.) and K5 (1.51 v.u.) atoms reflect the mixed (Sr/K) occupancies of these two sites (Table 4). We would like to point out that unrestrained occupancy refinements of the mixed Sr/K sites resulted in a nearly charge-balanced empirical formula (\approx KSr₆Sc(SiO₄)₄), with 63.9 positive charges vs. 64 negative charges. For the final refinement the occupancies were slightly modified and then fixed to achieve a completely charge-balanced formula.

Wieczorek et al.: Flux Syntheses and Crystal Structures ...

Atom	x	у	z	$U_{ m equiv}$	Occupancy*
Sr1	0.41000(2)	0.00028(5)	0.33110(7)	0.01021(12)	0.950
K1	0.41000(2)	0.00028(5)	0.33110(7)	0.01021(12)	0.050
Sr2	0.22493(2)	0.02370(5)	0.48859(7)	0.01168(12)	
Sr3	0.48151(4)	_1/4	-0.00159(10)	0.01361(16)	
Sr4	0.33940(5)	1/4	0.72011(13)	0.0154(2)	0.70
K4	0.33940(5)	1/4	0.72011(13)	0.0154(2)	0.30
K5	0.32136(6)	_1/4	0.65769(15)	0.0125(2)	0.60
Sr5	0.32136(6)	_1/4	0.65769(15)	0.0125(2)	0.40
Sc	0.49987(7)	_1/4	0.48125(19)	0.0070(3)	
Si1	0.32788(10)	_1/4	0.2314(3)	0.0088(4)	
Si2	0.34565(10)	1/4	0.2244(3)	0.0087(4)	
Si3	0.42300(7)	-0.00434(13)	0.76985(19)	0.0078(3)	
01	0.3229(3)	_1⁄4	0.0064(8)	0.0169(12)	
O2	0.2905(2)	-0.3687(4)	0.3133(6)	0.0176(8)	
O3	0.4082(3)	_1/4	0.3152(8)	0.0130(11)	
O4	0.3902(3)	1/4	0.0323(8)	0.0220(13)	
05	0.29935(19)	0.3700(3)	0.2466(6)	0.0147(8)	
06	0.4036(3)	1/4	0.3985(9)	0.0205(13)	
O7	0.41657(19)	-0.0331(3)	0.9907(5)	0.0137(8)	
08	0.34586(19)	0.0088(4)	0.6753(6)	0.0170(8)	
09	0.46801(18)	0.1152(3)	0.7105(5)	0.0119(8)	
O10	0.46390(19)	-0.1175(4)	0.6657(5)	0.0151(8)	

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for $KSr_6Sc(SiO_4)_4$. U_{equiv} according to Fischer & Tillmanns.²⁸

* Occupancy fixed to achieve completely charge-balanced formula (see text).

Table 3. Anisotropic displacement parameters for $(Å^2) \text{ KSr}_6 \text{Sc}(\text{SiO}_4)_4$.

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sr1	0.0099(2)	0.0114(2)	0.0093(2)	-0.00067(19)	-0.00048(17)	0.00082(19)
K1	0.0099(2)	0.0114(2)	0.0093(2)	-0.00067(19)	-0.00048(17)	0.00082(19)
Sr2	0.0114(2)	0.0148(3)	0.0088(2)	-0.00096(19)	0.00127(17)	0.00062(18)
Sr3	0.0176(4)	0.0145(4)	0.0088(3)	0.0	0.0004(3)	0.0
Sr4	0.0147(4)	0.0132(5)	0.0182(4)	0.0	0.0037(3)	0.0
K4	0.0147(4)	0.0132(5)	0.0182(4)	0.0	0.0037(3)	0.0
K5	0.0141(5)	0.0146(6)	0.0088(5)	0.0	0.0008(4)	0.0
Sr5	0.0141(5)	0.0146(6)	0.0088(5)	0.0	0.0008(4)	0.0
Sc	0.0086(6)	0.0084(6)	0.0041(6)	0.0	-0.0002(5)	0.0
Si1	0.0090(9)	0.0074(10)	0.0100(9)	0.0	-0.0005(7)	0.0
Si2	0.0083(9)	0.0078(10)	0.0100(9)	0.0	-0.0008(7)	0.0
Si3	0.0086(6)	0.0079(7)	0.0071(6)	-0.0005(5)	0.0008(5)	-0.0009(5)
01	0.029(3)	0.009(3)	0.012(3)	0.0	-0.007(2)	0.0
O2	0.020(2)	0.009(2)	0.024(2)	0.0023(16)	0.0016(16)	-0.0036(16)
03	0.012(2)	0.013(3)	0.014(3)	0.0	-0.001(2)	0.0
O4	0.024(3)	0.024(3)	0.018(3)	0.0	0.012(2)	0.0
05	0.0132(18)	0.0095(19)	0.021(2)	0.0008(16)	0.0013(15)	0.0017(15)
06	0.016(3)	0.023(3)	0.022(3)	0.0	-0.011(2)	0.0
07	0.0152(18)	0.0171(19)	0.0089(17)	0.0017(16)	0.0014(15)	0.0006(15)
08	0.0095(16)	0.026(2)	0.0150(18)	0.0000(17)	-0.0031(15)	0.0006(17)
09	0.0136(18)	0.010(2)	0.0117(18)	0.0027(15)	0.0033(14)	-0.0030(15)
O10	0.0176(19)	0.014(2)	0.0140(19)	-0.0060(16)	0.0039(15)	0.0018(15)

3.1.2. Rb₅In(MoO₄)₄

 $\text{Rb}_5\text{In}(\text{MoO}_4)_4$ belongs to the large group of isoelectronic compounds with the general formula $A_5M^{3+}(XO_4)_4$ ($A = \text{Rb}, \text{ K}, \text{Tl}; M^{3+} = \text{REE}, \text{Bi}, \text{Fe}, \text{In}; X = \text{Mo}, \text{W}$). Most of them crystallise in a variety of layered structure types, related to the mineral palmierite, $K_2Pb(SO_4)_2$.^{31,32} In contrast, $Rb_5Er(MoO_4)_4$ and isotypic $Rb_5In(MoO_4)_4$ represent a chain-based structure type, which is built from decorated kröhnkite-like chains. The crystal structure of $Rb_5Er(MoO_4)_4$ was determined by Klevtsova and Glinska-

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KSr ₆ Sc(SiO ₄) ₄					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr1-07	2.458(4)	0.399			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr1-O5	2.637(4)	0.246			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr1-09	2.685(4)	0.216			
Sr1-O82.745(4)0.184Sr1-O32.8050(8)0.156Sr1-O62.8396(13)0.142Sr1-O62.8396(13)0.142Sr1-O72.913(4)0.117Sr1-O9**3.193(4)0.055Mean2.731.84Sr2-O22.480(4)0.376Sr2-O52.533(4)0.326Sr2-O52.625(4)0.248Sr2-O82.636(4)0.246Sr2-O82.636(4)0.222Sr2-O12.697(2)0.209Sr2-O72.710(4)0.202Sr2-O72.710(4)0.202Sr3-O32.658(5)0.232Sr3-O42.466(6)0.390Sr3-O32.658(5)0.232Sr3-O7 (2x)2.741(4)0.187Sr3-O13.036(6)0.087Mean2.741.77Sr4-O42.426(6)0.435Sr4-O52.600(6)0.272Sr4-O42.426(6)0.435Sr4-O62.600(6)0.272Sr4-O42.426(6)0.435Sr4-O52.896(4)0.122Sr4-O62.600(6)0.272Sr4-O42.425(6)0.383K5-O12.485(6)0.383K5-O22.896(4)0.125Sr4-O42.425(6)0.383K5-O32.952(5)0.108K5-O12.485(6)0.383K5-O32.952(5)0.108K5-O32.952(5)0.108K5-O42.036(5)0.624Sc-	Sr1-02	2.724(4)	0.194			
$\begin{array}{cccccccc} \text{Sr1-O10} & 2.747(4) & 0.182 \\ \text{Sr1-O3} & 2.8050(8) & 0.156 \\ \text{Sr1-O6} & 2.8396(13) & 0.142 \\ \text{Sr1-O10} & 2.913(4) & 0.117 \\ \text{Sr1-O9**} & 3.193(4) & 0.055 \\ \hline \text{Mean} & 2.73 & 1.84 \\ \text{Sr2-O2} & 2.480(4) & 0.376 \\ \text{Sr2-O5} & 2.530(4) & 0.303 \\ \text{Sr2-O5} & 2.560(4) & 0.303 \\ \text{Sr2-O2} & 2.625(4) & 0.224 \\ \text{Sr2-O8} & 2.675(4) & 0.222 \\ \text{Sr2-O1} & 2.697(2) & 0.209 \\ \text{Sr2-O7} & 2.710(4) & 0.202 \\ \text{Mean} & 2.61 & 2.14 \\ \text{Sr3-O4} & 2.466(6) & 0.390 \\ \text{Sr3-O3} & 2.658(5) & 0.232 \\ \text{Sr3-O7} (2x) & 2.729(4) & 0.192 \\ \text{Sr3-O1} & 3.036(6) & 0.087 \\ \text{Sr3-O1} & 3.036(6) & 0.087 \\ \text{Sr3-O1} & 3.036(6) & 0.087 \\ \text{Sr4-O6} & 2.600(6) & 0.272 \\ \text{Sr4-O6} & 0.288(4) & 0.125 \\ \text{Sr4-O7} & 1.218 \\ \text{K5-O3} & 2.952(5) & 0.108 \\ \text{K5-O10} & 2.88(4) & 0.125 \\ \text{Sr4-O1} & 2.10 & 3.16 \\ \text{Si1-O1} & 1.606(6) & 1.050 \\ \text{Si1-O1} & 1.606(6) & 1.050 \\ \text{Si1-O1} & 1.648(5) & 0.937 \\ \text{Mean} & 1.62 & 4.02 \\ \text{Si2-O4} & 1.613(6) & 1.030 \\ \text{Si2-O5} (2x) & 1.617(4) & 1.019 \\ \text{Si2-O6} & 1.664(6) & 0.898 \\ \text{Mean} & 1.63 & 3.97 \\ \end{array}$	Sr1-08	2.745(4)	0 184			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr1-010	2.713(1) 2.747(4)	0.182			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr1-03	2.8050(8)	0.156			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr1-06	2.8396(13)	0.150			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr1_010	2.0390(13) 2.013(4)	0.112			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr1 00**	2.913(1) 3 103(1)	0.055			
$\begin{array}{c cccccc} \mathbf{Mean} & 2.75 & 1.04 \\ \mathbf{Sr2-02} & \mathbf{2.480(4)} & 0.376 \\ \mathbf{Sr2-02} & \mathbf{2.533(4)} & 0.326 \\ \mathbf{Sr2-05} & \mathbf{2.530(4)} & 0.236 \\ \mathbf{Sr2-02} & \mathbf{2.625(4)} & 0.224 \\ \mathbf{Sr2-08} & \mathbf{2.636(4)} & 0.246 \\ \mathbf{Sr2-08} & \mathbf{2.636(4)} & 0.222 \\ \mathbf{Mean} & 2.61 & 2.14 \\ \mathbf{Sr3-04} & \mathbf{2.666(6)} & 0.390 \\ \mathbf{Sr3-03} & \mathbf{2.658(5)} & 0.232 \\ \mathbf{Sr3-07} & \mathbf{2.710(4)} & 0.192 \\ \mathbf{Sr3-01} & \mathbf{2.058(5)} & 0.232 \\ \mathbf{Sr3-07} & \mathbf{2.729(4)} & 0.192 \\ \mathbf{Sr3-01} & \mathbf{2.036(6)} & 0.087 \\ \mathbf{Mean} & 2.74 & 1.77 \\ \mathbf{Sr3-010} & \mathbf{2.305(6)} & 0.087 \\ \mathbf{Mean} & 2.74 & 1.77 \\ \mathbf{Sr4-04} & \mathbf{2.426(6)} & 0.435 \\ \mathbf{Sr4-06} & \mathbf{2.600(6)} & 0.272 \\ \mathbf{Sr4-06} & \mathbf{2.600(6)} & 0.272 \\ \mathbf{Sr4-06} & \mathbf{2.600(6)} & 0.272 \\ \mathbf{Sr4-08} & (\mathbf{2x}) & \mathbf{2.723(4)} & 0.195 \\ \mathbf{Sr4-06} & \mathbf{2.600(6)} & 0.272 \\ \mathbf{Sr4-09} & (\mathbf{2x}) & \mathbf{2.888(4)} & 0.125 \\ \mathbf{Sr4-09} & (\mathbf{2x}) & \mathbf{2.888(4)} & 0.125 \\ \mathbf{Sr4-09} & (\mathbf{2x}) & \mathbf{2.888(4)} & 0.125 \\ \mathbf{Sr4-09} & (\mathbf{2x}) & \mathbf{2.885(4)} & 0.125 \\ \mathbf{Sr4-09} & (\mathbf{2x}) & \mathbf{2.874(4)} & 0.189 \\ \mathbf{K5-01} & \mathbf{2.485(6)} & 0.383 \\ \mathbf{K5-05} & (\mathbf{2x}) & \mathbf{2.747(4)} & 0.189 \\ \mathbf{K5-02} & (\mathbf{2x}) & \mathbf{2.877(4)} & 0.189 \\ \mathbf{K5-010} & (\mathbf{2x}) & \mathbf{3.106(4)} & 0.071 \\ \mathbf{Mean} & 2.76 & 1.61 \\ \mathbf{K5-010} & \mathbf{2.036(5)} & 0.624 \\ \mathbf{Sc-010} & (\mathbf{2x}) & \mathbf{3.106(4)} & 0.071 \\ \mathbf{Mean} & 2.10 & 3.16 \\ \mathbf{Si1-01} & \mathbf{1.606(6)} & 1.050 \\ \mathbf{Si1-02} & (\mathbf{2x}) & \mathbf{2.127(4)} & 0.488 \\ \mathbf{Mean} & 2.10 & 3.16 \\ \mathbf{Si1-02} & (\mathbf{2x}) & \mathbf{1.617(4)} & 1.019 \\ \mathbf{Si2-04} & \mathbf{1.613(6)} & 1.030 \\ \mathbf{Si2-05} & (\mathbf{2x}) & \mathbf{1.617(4)} & 1.019 \\ \mathbf{Si2-04} & \mathbf{1.613(6)} & 1.030 \\ \mathbf{Si2-04} & \mathbf{1.613(6)} & 1.030 \\ \mathbf{Si2-05} & (\mathbf{2x}) & \mathbf{1.617(4)} & 0.989 \\ \mathbf{Mean} & 1.64 & 3.86 \\ \mathbf{Mean} & 1.64 & 3.86 \\ \mathbf{Mean} & 1.63 & 3.97 \\ \mathbf{Mean} $	Moon	773	1.84			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr2_02	2.73 2 480(4)	0.376			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Sr^2 = 02$	2.400(4) 2.533(4)	0.376			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr2 05	2.555(4) 2.560(4)	0.320			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_{r2} = 0.02$	2.500(4) 2.625(4)	0.303			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_{12} = 02$ Sr2 08	2.025(4) 2.636(4)	0.234			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S12-08	2.030(4)	0.240			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI2-08 Sr2 01	2.073(4) 2.607(2)	0.222			
S12-O72.710(4)0.202Mean2.612.14Sr3-O42.466(6)0.390Sr3-O32.658(5)0.232Sr3-O7 (2x)2.729(4)0.192Sr3-O1 (2x)2.817(4)0.152Sr3-O1 (2x)2.817(4)0.152Sr3-O1 (2x)2.817(4)0.152Sr3-O1 (2x)2.817(4)0.152Sr3-O1 (2x)2.817(4)0.152Sr4-O4 (2x)2.723(4)0.195Sr4-O5 (2x)2.888(4)0.125Sr4-O6 (2x)2.888(4)0.125Sr4-O2 (2x)2.886(4)0.122Mean2.761.61K5-O1 (2x)2.882(4)0.142K5-O2 (2x)2.852(4)0.143K5-O32.952(5)0.108K5-O3 (2x)2.747(4)0.189K5-O32.952(5)0.108K5-O10 (2x)2.098(4)0.528Sc-O62.036(5)0.624Sc-O10 (2x)2.098(4)0.528Sc-O32.117(5)0.501Sc-O41.618(4)1.016Si1-O11.606(6)1.050Si1-O2 (2x)1.618(4)1.016Si1-O31.648(5)0.937Mean1.624.02Si2-O41.613(6)1.030Si2-O5 (2x)1.617(4)1.019Si2-O61.664(6)0.898Mean1.643.86Si3-O71.611(4)1.036Si3-O91.647(4)0.940Si3-O91.647(4)0.940	SI2-01 Sr2_07	2.097(2) 2.710(4)	0.209			
Mean2.012.14 $Sr3-O4$ 2.466(6)0.390 $Sr3-O3$ 2.658(5)0.232 $Sr3-O7$ (2x)2.729(4)0.192 $Sr3-O1$ (2x)2.817(4)0.187 $Sr3-O10$ (2x)2.817(4)0.152 $Sr3-O1$ 3.036(6)0.087Mean2.741.77 $Sr4-O4$ 2.426(6)0.435 $Sr4-O6$ 2.600(6)0.272 $Sr4-O6$ 2.600(6)0.272 $Sr4-O6$ 2.600(6)0.272 $Sr4-O6$ 2.600(6)0.122Mean2.761.61 $K5-O1$ 2.485(6)0.383 $K5-O2$ (2x)2.896(4)0.122Mean2.7661.61 $K5-O1$ 2.485(6)0.383 $K5-O5$ (2x)2.747(4)0.189 $K5-O2$ (2x)2.852(4)0.142 $K5-O3$ 2.952(5)0.108 $K5-O10$ (2x)3.106(4)0.071Mean2.871.51 $Sc-O6$ 2.036(5)0.624 $Sc-O10$ (2x)2.098(4)0.528 $Sc-O3$ 2.117(5)0.501 $Sc-O9$ (2x)2.127(4)0.488Mean2.103.16 $Si1-O1$ 1.606(6)1.050 $Si1-O2$ (2x)1.618(4)1.016 $Si1-O2$ (2x)1.617(4)1.019 $Si2-O4$ 1.613(6)1.030 $Si2-O5$ (2x)1.617(4)1.019 $Si2-O5$ (2x)1.617(4)1.019 $Si3-O7$ 1.611(4)1.036 $Si3-O7$ 1.611(4)	SI2-07	2.710(4)	0.202			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr2 O4	2.01	2.14			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SIS-04 Sr2 O2	2.400(0) 2.658(5)	0.390			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_{12} = 0.5$ $S_{n2} = 0.7 (2\pi)$	2.038(3) 2.720(4)	0.232			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI3=07(2x)	2.729(4) 2.741(4)	0.192			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI3-O(2x) Sr2 O10 (2x)	2.741(4) 2.817(4)	0.187			
S15-01 $3.050(6)$ 0.087 Mean 2.74 1.77 Sr4-04 $2.426(6)$ 0.435 Sr4-06 $2.600(6)$ 0.272 Sr4-08 (2x) $2.723(4)$ 0.195 Sr4-09 (2x) $2.888(4)$ 0.125 Sr4-02 (2x) $2.896(4)$ 0.122 Mean 2.76 1.61 K5-01 $2.485(6)$ 0.383 K5-05 (2x) $2.747(4)$ 0.189 K5-02 (2x) $2.852(4)$ 0.142 K5-08 (2x) $2.938(4)$ 0.113 K5-03 $2.952(5)$ 0.108 K5-010 (2x) $2.098(4)$ 0.071 Mean 2.87 1.51 Sc-06 $2.036(5)$ 0.624 Sc-010 (2x) $2.098(4)$ 0.528 Sc-03 $2.117(5)$ 0.501 Sc-09 (2x) $2.127(4)$ 0.488 Mean 1.62 4.02 Si1-02 (2x) $1.618(4)$ 1.016 Si1-02 (2x) $1.617(4)$ 1.030 Si2-05 (2x) $1.617(4)$ 1.019 Si2-05 (2x) $1.617(4)$ 1.019 Si2-05 (2x) $1.617(4)$ 1.019 Si2-05 (2x) $1.617(4)$ 1.030 Si3-09 $1.647(4)$ 0.940 Si3-09 $1.647(4)$ 0.940 Si3-010 $1.664(4)$ 0.898 Mean 1.63 3.97	SI3-010(2x) Sr2 01	2.017(4) 2.026(6)	0.132			
Interin2.741.77 $Sr4-O4$ 2.426(6)0.435 $Sr4-O6$ 2.600(6)0.272 $Sr4-O8$ (2x)2.723(4)0.195 $Sr4-O9$ (2x)2.888(4)0.125 $Sr4-O2$ (2x)2.896(4)0.122Mean2.761.61 $K5-O1$ 2.485(6)0.383 $K5-O5$ (2x)2.747(4)0.189 $K5-O2$ (2x)2.852(4)0.142 $K5-O3$ 2.938(4)0.113 $K5-O3$ 2.952(5)0.108 $K5-O10$ (2x)3.106(4)0.071Mean2.871.51 $Sc-O6$ 2.036(5)0.624 $Sc-O10$ (2x)2.098(4)0.528 $Sc-O3$ 2.117(5)0.501 $Sc-O3$ 2.117(5)0.501 $Sc-O9$ (2x)2.127(4)0.488Mean1.624.02 $Si2-O4$ 1.613(6)1.030 $Si2-O5$ (2x)1.617(4)1.019 $Si2-O5$ (2x)1.617(4)1.019 $Si2-O5$ (2x)1.617(4)1.036 $Si3-O7$ 1.611(4)1.036 $Si3-O9$ 1.647(4)0.940 $Si3-O10$ 1.664(4)0.898Mean1.633.97	Moon	3.030(0) 2.74	0.087			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr4 Q4	2.14	1.77			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S14-04 Sr4 06	2.420(0)	0.433			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_{r4} = 00$ Sr4 08 (2x)	2.000(0) 2.723(4)	0.272			
S14-O9 (2x)2.886(4)0.123Sr4-O2 (2x)2.896(4)0.122Mean2.761.61K5-O12.485(6)0.383K5-O5 (2x)2.747(4)0.189K5-O2 (2x)2.852(4)0.142K5-O8 (2x)2.938(4)0.113K5-O32.952(5)0.108K5-O10 (2x)3.106(4)0.071Mean2.871.51Sc-O62.036(5)0.624Sc-O10 (2x)2.098(4)0.528Sc-O32.117(5)0.501Sc-O9 (2x)2.127(4)0.488Mean2.103.16Si1-O11.606(6)1.050Si1-O2 (2x)1.618(4)1.016Si1-O31.648(5)0.937Mean1.624.02Si2-O5 (2x)1.617(4)1.019Si2-O5 (2x)1.617(4)1.019Si2-O5 (2x)1.617(4)0.940Si3-O71.611(4)1.036Si3-O81.629(4)0.987Mean1.643.86Si3-O101.664(4)0.898Mean1.633.97	$S_{r4} = O_{0}(2x)$	2.723(4)	0.195			
S14-02 (2x)2.890(4) 0.122 Mean2.761.61K5-012.485(6)0.383K5-05 (2x)2.747(4)0.189K5-02 (2x)2.852(4)0.142K5-08 (2x)2.938(4)0.113K5-032.952(5)0.108K5-010 (2x)3.106(4)0.071Mean2.871.51Sc-062.036(5)0.624Sc-010 (2x)2.098(4)0.528Sc-032.117(5)0.501Sc-09 (2x)2.127(4)0.488Mean2.103.16Si1-011.606(6)1.050Si1-02 (2x)1.618(4)1.016Si1-031.648(5)0.937Mean1.624.02Si2-041.613(6)1.030Si2-05 (2x)1.617(4)1.019Si2-061.664(6)0.898Mean1.643.86Si3-071.611(4)1.036Si3-081.629(4)0.987Si3-091.647(4)0.940Si3-0101.664(4)0.898Mean1.633.97	$S_{r4} = 0.9 (2x)$	2.000(4) 2.006(4)	0.123			
Nteal2.701.01K5-O1 $2.485(6)$ 0.383 K5-O5 (2x) $2.747(4)$ 0.189 K5-O2 (2x) $2.852(4)$ 0.142 K5-O8 (2x) $2.938(4)$ 0.113 K5-O3 $2.952(5)$ 0.108 K5-O10 (2x) $3.106(4)$ 0.071 Mean 2.87 1.51 Sc-O6 $2.036(5)$ 0.624 Sc-O10 (2x) $2.098(4)$ 0.528 Sc-O3 $2.117(5)$ 0.501 Sc-O9 (2x) $2.127(4)$ 0.488 Mean 2.10 3.16 Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	S14=02(2x) Moon	2.890(4)	0.122			
K5-O5 $(2,45)(0)$ $(0,56)$ $K5-O5$ $(2x)$ $2.747(4)$ (0.189) $K5-O2$ $(2x)$ $2.852(4)$ (0.142) $K5-O8$ $(2x)$ $2.938(4)$ (0.113) $K5-O3$ $2.952(5)$ (0.108) $K5-O10$ $(2x)$ $3.106(4)$ (0.071) Mean 2.87 1.51 $Sc-O6$ $2.036(5)$ (0.624) $Sc-O10$ $(2x)$ $2.098(4)$ (0.528) $Sc-O3$ $2.117(5)$ (0.501) $Sc-O3$ $2.117(5)$ (0.501) $Sc-O9$ $(2x)$ $2.127(4)$ (0.488) Mean 2.10 3.16 $Si1-O1$ $1.606(6)$ 1.050 $Si1-O2$ $(2x)$ $1.618(4)$ 1.016 $Si1-O2$ $(2x)$ $1.618(4)$ 1.016 $Si2-O5$ $(2x)$ $1.617(4)$ 1.019 $Si2-O5$ $(2x)$ $1.617(4)$ 1.019 $Si2-O5$ $(2x)$ $1.617(4)$ 1.019 $Si2-O5$ $(2x)$ $1.611(4)$ 1.036 $Si3-O7$ $1.611(4)$ 1.036 $Si3-O8$ $1.629(4)$ 0.987 $Si3-O9$ $1.647(4)$ 0.940 $Si3-O10$ $1.664(4)$ 0.898 Mean 1.63 3.97	K5 O1	2.70	0.383			
K5-O3 $2.747(4)$ 0.189 K5-O2 (2x) $2.852(4)$ 0.142 K5-O8 (2x) $2.938(4)$ 0.113 K5-O3 $2.952(5)$ 0.108 K5-O10 (2x) $3.106(4)$ 0.071 Mean 2.87 1.51 Sc-O6 $2.036(5)$ 0.624 Sc-O10 (2x) $2.098(4)$ 0.528 Sc-O3 $2.117(5)$ 0.501 Sc-O9 (2x) $2.127(4)$ 0.488 Mean 2.10 3.16 Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si1-O3 $1.648(5)$ 0.937 Mean 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	$K_{5} = 05 (2x)$	2.403(0) 2.747(4)	0.585			
RS-O2 (2x) $2.02(4)$ 0.142 K5-O8 (2x) $2.938(4)$ 0.113 K5-O3 $2.952(5)$ 0.108 K5-O10 (2x) $3.106(4)$ 0.071 Mean 2.87 1.51 Sc-O6 $2.036(5)$ 0.624 Sc-O10 (2x) $2.098(4)$ 0.528 Sc-O3 $2.117(5)$ 0.501 Sc-O9 (2x) $2.127(4)$ 0.488 Mean 2.10 3.16 Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si1-O3 $1.648(5)$ 0.937 Mean 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	$K_{5} = 0.000 (2x)$	2.747(4) 2.852(4)	0.169			
RS-O32.550(4)0.115K5-O32.952(5)0.108K5-O10 (2x) $3.106(4)$ 0.071Mean2.871.51Sc-O62.036(5)0.624Sc-O10 (2x)2.098(4)0.528Sc-O32.117(5)0.501Sc-O9 (2x)2.127(4)0.488Mean2.103.16Si1-O11.606(6)1.050Si1-O2 (2x)1.618(4)1.016Si1-O31.648(5)0.937Mean1.624.02Si2-O41.613(6)1.030Si2-O5 (2x)1.617(4)1.019Si2-O61.664(6)0.898Mean1.643.86Si3-O71.611(4)1.036Si3-O81.629(4)0.987Si3-O91.647(4)0.940Si3-O101.664(4)0.898Mean1.633.97	$K_{5-O2}(2x)$ $K_{5-O8}(2x)$	2.032(4) 2.038(4)	0.142			
RS-O3 $2.52(3)$ 0.100 K5-O10 (2x) $3.106(4)$ 0.071 Mean 2.87 1.51 Sc-O6 $2.036(5)$ 0.624 Sc-O10 (2x) $2.098(4)$ 0.528 Sc-O3 $2.117(5)$ 0.501 Sc-O9 (2x) $2.127(4)$ 0.488 Mean 2.10 3.16 Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si1-O3 $1.648(5)$ 0.937 Mean 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	K5-03	2.950(4)	0.113			
Inclusion $3.160(4)$ 0.011 Mean 2.87 1.51 Sc-O6 $2.036(5)$ 0.624 Sc-O10 (2x) $2.098(4)$ 0.528 Sc-O3 $2.117(5)$ 0.501 Sc-O9 (2x) $2.127(4)$ 0.488 Mean 2.10 3.16 Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si1-O3 $1.648(5)$ 0.937 Mean 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	$K_{5} = 0.000 (2x)$	3.106(4)	0.100			
Nreal2.671.61Sc-O6 $2.036(5)$ 0.624 Sc-O10 (2x) $2.098(4)$ 0.528 Sc-O3 $2.117(5)$ 0.501 Sc-O9 (2x) $2.127(4)$ 0.488 Mean 2.10 3.16 Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si1-O3 $1.648(5)$ 0.937 Mean 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	Mean	2 87	1 51			
$\begin{array}{cccc} scool & 2.058(3) & 0.021 \\ sc-O10 (2x) & 2.098(4) & 0.528 \\ sc-O3 & 2.117(5) & 0.501 \\ sc-O9 (2x) & 2.127(4) & 0.488 \\ \hline Mean & 2.10 & 3.16 \\ si1-O1 & 1.606(6) & 1.050 \\ si1-O2 (2x) & 1.618(4) & 1.016 \\ si1-O3 & 1.648(5) & 0.937 \\ \hline Mean & 1.62 & 4.02 \\ si2-O4 & 1.613(6) & 1.030 \\ si2-O5 (2x) & 1.617(4) & 1.019 \\ si2-O6 & 1.664(6) & 0.898 \\ \hline Mean & 1.64 & 3.86 \\ si3-O7 & 1.611(4) & 1.036 \\ si3-O8 & 1.629(4) & 0.987 \\ si3-O9 & 1.647(4) & 0.940 \\ si3-O10 & 1.664(4) & 0.898 \\ \hline Mean & 1.63 & 3.97 \\ \hline \end{array}$	Sc-O6	2.07	0.624			
$\begin{array}{cccc} \text{Sc-O1} & \text{2.05}(4) & 0.525 \\ \text{Sc-O3} & 2.117(5) & 0.501 \\ \text{Sc-O9} (2x) & 2.127(4) & 0.488 \\ \textbf{Mean} & \textbf{2.10} & \textbf{3.16} \\ \text{Si}1-O1 & 1.606(6) & 1.050 \\ \text{Si}1-O2 (2x) & 1.618(4) & 1.016 \\ \text{Si}1-O3 & 1.648(5) & 0.937 \\ \textbf{Mean} & \textbf{1.62} & \textbf{4.02} \\ \text{Si}2-O4 & 1.613(6) & 1.030 \\ \text{Si}2-O5 (2x) & 1.617(4) & 1.019 \\ \text{Si}2-O6 & 1.664(6) & 0.898 \\ \textbf{Mean} & \textbf{1.64} & \textbf{3.86} \\ \text{Si}3-O7 & 1.611(4) & 1.036 \\ \text{Si}3-O8 & 1.629(4) & 0.987 \\ \text{Si}3-O9 & 1.647(4) & 0.940 \\ \text{Si}3-O10 & 1.664(4) & 0.898 \\ \textbf{Mean} & \textbf{1.63} & \textbf{3.97} \\ \end{array}$	$S_{c}=010(2x)$	2.030(3) 2.098(4)	0.528			
$\begin{array}{cccc} \text{Sc-O9} & \text{2.117(3)} & \text{0.301} \\ \text{Sc-O9} & \text{(2x)} & \text{2.127(4)} & \text{0.488} \\ \textbf{Mean} & \textbf{2.10} & \textbf{3.16} \\ \text{Si1-O1} & 1.606(6) & 1.050 \\ \text{Si1-O2} & (2x) & 1.618(4) & 1.016 \\ \text{Si1-O3} & 1.648(5) & 0.937 \\ \textbf{Mean} & \textbf{1.62} & \textbf{4.02} \\ \text{Si2-O4} & 1.613(6) & 1.030 \\ \text{Si2-O5} & (2x) & 1.617(4) & 1.019 \\ \text{Si2-O6} & 1.664(6) & 0.898 \\ \textbf{Mean} & \textbf{1.64} & \textbf{3.86} \\ \text{Si3-O7} & 1.611(4) & 1.036 \\ \text{Si3-O8} & 1.629(4) & 0.987 \\ \text{Si3-O9} & 1.647(4) & 0.940 \\ \text{Si3-O10} & 1.664(4) & 0.898 \\ \textbf{Mean} & \textbf{1.63} & \textbf{3.97} \\ \end{array}$	S_{c-O3}	2.000(4)	0.520			
$\begin{array}{c ccccc} \text{Mean} & 2.127(4) & 0.466 \\ \hline \text{Mean} & 2.10 & 3.16 \\ \text{Si1-O1} & 1.606(6) & 1.050 \\ \text{Si1-O2} (2x) & 1.618(4) & 1.016 \\ \text{Si1-O3} & 1.648(5) & 0.937 \\ \hline \text{Mean} & 1.62 & 4.02 \\ \text{Si2-O4} & 1.613(6) & 1.030 \\ \text{Si2-O5} (2x) & 1.617(4) & 1.019 \\ \text{Si2-O6} & 1.664(6) & 0.898 \\ \hline \text{Mean} & 1.64 & 3.86 \\ \text{Si3-O7} & 1.611(4) & 1.036 \\ \text{Si3-O8} & 1.629(4) & 0.987 \\ \text{Si3-O9} & 1.647(4) & 0.940 \\ \text{Si3-O10} & 1.664(4) & 0.898 \\ \hline \text{Mean} & 1.63 & 3.97 \\ \hline \end{array}$	$S_{c}=09(2x)$	2.117(3) 2.127(4)	0.301			
Nich2.103.10Si1-O1 $1.606(6)$ 1.050 Si1-O2 (2x) $1.618(4)$ 1.016 Si1-O3 $1.648(5)$ 0.937 Mean 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	Mean	2.127(4)	3 16			
$\begin{array}{cccccccccccccc} \text{Si1-O2} & \text{1.600}(6) & \text{1.050} \\ \text{Si1-O2} & (2x) & 1.618(4) & 1.016 \\ \text{Si1-O3} & 1.648(5) & 0.937 \\ \textbf{Mean} & \textbf{1.62} & \textbf{4.02} \\ \text{Si2-O4} & 1.613(6) & 1.030 \\ \text{Si2-O5} & (2x) & 1.617(4) & 1.019 \\ \text{Si2-O6} & 1.664(6) & 0.898 \\ \textbf{Mean} & \textbf{1.64} & \textbf{3.86} \\ \text{Si3-O7} & 1.611(4) & 1.036 \\ \text{Si3-O8} & 1.629(4) & 0.987 \\ \text{Si3-O9} & 1.647(4) & 0.940 \\ \text{Si3-O10} & 1.664(4) & 0.898 \\ \textbf{Mean} & \textbf{1.63} & \textbf{3.97} \\ \end{array}$	Si1_O1	1.606(6)	1.050			
$\begin{array}{c cccccc} \text{Si1-O2} & \text{I.616(4)} & \text{I.616} \\ \text{Si1-O3} & \text{I.648(5)} & 0.937 \\ \hline \text{Mean} & \textbf{I.62} & \textbf{4.02} \\ \text{Si2-O4} & \text{I.613(6)} & \text{I.030} \\ \text{Si2-O5} & (2x) & \text{I.617(4)} & \text{I.019} \\ \text{Si2-O6} & \text{I.664(6)} & 0.898 \\ \hline \text{Mean} & \textbf{I.64} & \textbf{3.86} \\ \text{Si3-O7} & \text{I.611(4)} & \text{I.036} \\ \text{Si3-O8} & \text{I.629(4)} & 0.987 \\ \text{Si3-O9} & \text{I.647(4)} & 0.940 \\ \text{Si3-O10} & \text{I.664(4)} & 0.898 \\ \hline \text{Mean} & \textbf{I.63} & \textbf{3.97} \\ \hline \end{array}$	$Si1_02(2x)$	1.600(0) 1.618(4)	1.050			
Mean 1.62 4.02 $Si2-O4$ $1.613(6)$ 1.030 $Si2-O5(2x)$ $1.617(4)$ 1.019 $Si2-O6$ $1.664(6)$ 0.898 Mean 1.64 3.86 $Si3-O7$ $1.611(4)$ 1.036 $Si3-O8$ $1.629(4)$ 0.987 $Si3-O9$ $1.647(4)$ 0.940 $Si3-O10$ $1.664(4)$ 0.898 Mean 1.63 3.97	Si1_02 (2x)	1.618(5)	0.937			
Nican 1.62 4.02 Si2-O4 $1.613(6)$ 1.030 Si2-O5 (2x) $1.617(4)$ 1.019 Si2-O6 $1.664(6)$ 0.898 Mean 1.64 3.86 Si3-O7 $1.611(4)$ 1.036 Si3-O8 $1.629(4)$ 0.987 Si3-O9 $1.647(4)$ 0.940 Si3-O10 $1.664(4)$ 0.898 Mean 1.63 3.97	Mean	1.610(5)	4 02			
$\begin{array}{cccccccc} \text{Si2-O5} & (2x) & 1.617(4) & 1.019 \\ \text{Si2-O6} & 1.664(6) & 0.898 \\ \text{Mean} & 1.64 & 3.86 \\ \text{Si3-O7} & 1.611(4) & 1.036 \\ \text{Si3-O8} & 1.629(4) & 0.987 \\ \text{Si3-O9} & 1.647(4) & 0.940 \\ \text{Si3-O10} & 1.664(4) & 0.898 \\ \text{Mean} & 1.63 & 3.97 \\ \end{array}$	Si2_04	1.62	1.030			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si2 = O5 (2x)	1.617(4)	1.030			
Mean 1.64 3.86 Si3-O7 1.611(4) 1.036 Si3-O8 1.629(4) 0.987 Si3-O9 1.647(4) 0.940 Si3-O10 1.664(4) 0.898 Mean 1.63 3.97	Si2-06	1.664(6)	0.898			
Si3-O7 1.611(4) 1.036 Si3-O8 1.629(4) 0.987 Si3-O9 1.647(4) 0.940 Si3-O10 1.664(4) 0.898 Mean 1.63 3.97	Mean	1.64	3.86			
Si3-O8 1.629(4) 0.987 Si3-O9 1.647(4) 0.940 Si3-O10 1.664(4) 0.898 Mean 1.63 3.97	Si3-07	1.611(4)	1 036			
Si3-O9 1.647(4) 0.940 Si3-O10 1.664(4) 0.898 Mean 1.63 3.97	Si3-08	1.629(4)	0.987			
Si3-O10 1.664(4) 0.898 Mean 1.63 3.97	Si3-09	1.647(4)	0.940			
Mean 1.63 3.97	Si3-010	1.664(4)	0.898			
	Mean	1.63	3.97			

ya²¹; it is monoclinic, with space group P2/c and the unitcell parameters a = 11.44, b = 7.99, c = 11.19 Å, $\beta =$ 113.3°. We point out that the crystal structure data of $Rb_5Er(MoO_4)_4$ are missing in the latest edition of the Inorganic Crystal Structure Database (ICSD). The ICDD-PDF contains a measured X-ray powder diffraction pattern of $Rb_5In(MoO_4)_4$ (PDF-entry no. 26-1367).³³ The pattern is indexed on the basis of a monoclinic (space group not given) unit cell with a = 18.78, b = 7.984, c = 12.30 Å, $\beta =$ 91.58°, V = 1843.56 Å³ which corresponds numerically to a B-centered cell with double volume as compared to the unit-cell parameters reported here (a = 11.391, b = 7.983, $c = 11.100 \text{ Å}, \beta = 113.74^{\circ}, V = 924.0 \text{ Å}^3$, space group P2/c; transformation matrix P- to B-centred cell [10-1 010 101]). A comparison of the powder diffraction data reported in PDF-entry no. 26-1367 ³³ with those calculated for the compound described in this work shows that all

Figure 4. View of $Rb_5In(MoO_4)_4$ along [001], parallel to the decorated kröhnkite-like octahedral-tetrahedral chains.

Bond-valence sums (v.u.) for the oxygen atoms O1 to O10 are as follows: O1 = 1.94, O2 = 2.10, O3 = 2.09, O4 = 1.86, O5 = 1.89, O6 = 2.01, O7 = 1.83, O8 = 1.90, O9 = 2.01, O10 = 1.95.

^{*} Bond-valence calculations are based on parameters of Brese & O'Keeffe²⁹ and for Sc atoms, on Brown³⁰ (updated values from webmirrors/i_d_brown). Bond-valence sums for the mixed Sr/K sites Sr4 and K5 were calculated taking into account the respective occupancies (see Table 2).

** Not used for calculation of mean distances and BVSs.

strong and medium strong reflections of $Rb_5In(MoO_4)_4$ appear in the pattern. However, there are a number of additional strong reflections reported that clearly do not belong to the powder diffraction pattern of $Rb_5In(MoO_4)_4$.

The asymmetric unit of $Rb_5In(MoO_4)_4$ contains one In site, three Rb, two Mo and eight O sites. Two atoms, Rb1 and In, lie on special positions, whereas all remaining atoms are in general positions. The main building unit of its crystal structure (see Figures 4, 5) is a decorated kröhnkite-like [100] chain built from a distorted InO_6 octahedron corner-linked by MoO_4 tetrahedra and decorated by additional MoO_4 tetrahedra. These chains are separated in different directions by three non-equivalent Rb atoms. A somewhat layered character of the atomic arrangement parallel to (100) is evident from the view in Figure 5.

Figure 5. View of Rb_{5} In(MoO₄)₄ along [010], perpendicular to the decorated kröhnkite-like octahedral-tetrahedral chains.

The InO₆ octahedra are only slightly distorted with an average In–O bond length of 2.136 Å and O–In–O bond angles between 81.01 and 99.33 and between 156.08 and 178.74°. The Rb atoms are coordinated by eight or ten O atoms with average Rb–O bond lengths of 3.026 Å (for [8]–coordination), and 3.093 and 3.120 Å (for [10]–coordination).

According to the classification of molybdates with composition $A_5M^{3+}(MoO_4)_4$ (A = K, Rb; $M^{3+} = REE$, Y, In, Sc, Fe, Al, Bi) by Lazoryak and Efremov³¹, Rb₅Er (MoO₄)₄ and isotypic Rb₅In(MoO₄)₄ adopt structure type VII. This type is structurally similar to type V adopted by $K_5M^{3+}(MoO_4)_4$ ($M^{3+} = Tm$ –Lu, In, Sc), and represented by $K_5In(MoO_4)_4$ discussed below.

3. 2. Comparison With Other Compounds Based on Decorated Kröhnkite-like Octahedral-Tetrahedral Chains

As already mentioned in the introduction, the kröhnkite-type chain *sensu strictu* is encountered in a fairly large number of compounds. In contrast, there exist only few compounds containing decorated kröhnkite-like chains. Figure 6 compares the chain units of nine known and two new compounds with decorated kröhnkite-like chains. All these compounds contain more or less distorted MO_6 octahedra linked and decorated by the XO_4 tetrahedra. However, there are distinct differences concerning both linkage and orientation of XO_4 tetrahedra with respect to the octahedra.

In $\text{KSr}_6\text{Sc}(\text{SiO}_4)_4$ (Figure 6a) and the protonated phosphate compound $\text{Ba}_2\text{Ca}(\text{HPO}_4)_2(\text{H}_2\text{PO}_4)_2$,³³ the two decorating tetrahedra are attached to the *trans* apices of the MO_6 octahedra. Specifically, in $\text{KSr}_6\text{Sc}(\text{SiO}_4)_4$ two Si3–centred tetrahedra corner-link neighbouring octahedra, whereas the two remaing Si1– and Si2–centred tetrahedra only decorate the chain. Although the overall topo-

 Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for Rb₅In(MoO₄)₄. U_{equiv} according to Fischer & Tillmanns.²⁸

Atom	x	у	z	U _{equiv}
Rb1	1/2	0.38964(4)	1⁄4	0.02177(7)
Rb2	0.10260(2)	0.34909(3)	0.65569(2)	0.02542(6)
Rb3	0.40615(2)	0.86800(3)	0.35455(2)	0.01999(5)
In	0.0	0.08625(3)	1/4	0.01074(5)
Mo1	0.195171(15)	0.85392(2)	0.555916(16)	0.01067(4)
Mo2	0.283066(18)	0.33993(2)	0.442361(17)	0.01253(5)
01	0.11442(15)	0.8913(2)	0.38167(14)	0.0185(3)
O2	0.35569(15)	0.9074(2)	0.60628(16)	0.0211(3)
03	0.12492(15)	0.9706(2)	0.64853(15)	0.0182(3)
O4	0.17831(19)	0.6432(2)	0.58073(19)	0.0279(4)
05	0.11423(15)	0.2778(2)	0.37620(16)	0.0229(3)
06	0.34680(16)	0.3243(2)	0.61421(15)	0.0211(3)
07	0.30474(18)	0.5421(2)	0.39453(18)	0.0254(4)
08	0.37157(17)	0.2057(2)	0.38808(17)	0.0239(3)

Wieczorek et al.: Flux Syntheses and Crystal Structures ...

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	U ₁₂
Rb1	0.02211(15)	0.01526(13)	0.02713(15)	0.0	0.00905(12)	0.0
Rb2	0.02270(12)	0.02601(13)	0.02473(12)	0.00352(9)	0.00662(9)	-0.00855(9)
Rb3	0.02290(11)	0.01753(10)	0.01843(10)	-0.00186(8)	0.00716(8)	0.00038(8)
In	0.00952(8)	0.01248(9)	0.00981(8)	0.0	0.00345(6)	0.0
Mo1	0.00984(8)	0.01184(8)	0.01064(7)	0.00178(5)	0.00443(6)	0.00112(5)
Mo2	0.01297(8)	0.01153(8)	0.01255(8)	-0.00024(5)	0.00456(6)	-0.00114(5)
01	0.0187(7)	0.0220(8)	0.0124(6)	0.0036(6)	0.0040(6)	0.0069(6)
O2	0.0122(7)	0.0289(9)	0.0221(7)	0.0005(7)	0.0069(6)	0.0001(6)
O3	0.0189(7)	0.0214(8)	0.0179(7)	0.0011(6)	0.0112(6)	0.0036(6)
O4	0.0382(11)	0.0141(8)	0.0363(10)	0.0053(7)	0.0203(9)	0.0008(7)
05	0.0168(7)	0.0244(8)	0.0254(8)	-0.0106(7)	0.0063(6)	-0.0065(6)
06	0.0238(8)	0.0221(8)	0.0149(7)	0.0015(6)	0.0052(6)	0.0007(6)
O7	0.0353(10)	0.0151(7)	0.0263(8)	0.0040(6)	0.0131(7)	-0.0036(7)
08	0.0268(8)	0.0216(8)	0.0278(8)	-0.0024(7)	0.0157(7)	0.0022(7)

Table 6. Anisotropic displacement parameters (Å²) for $Rb_5In(MoO_4)_4$.

Table 7. Selected interatomic distances (Å) and calculated bond-valence sums (v.u.) for the coordination polyhedra in $Rb_sIn(MoO_a)_a^*$.

Rb ₅ In(MoO ₄) ₄					
Rb1–O6 (2x)	2.9007(19)	0.177	Rb306	3.1003(18)	0.103
Rb1–O8 (2x)	2.9069(18)	0.174	Rb3–O2	3.1328(17)	0.094
Rb1–O2 (2x)	2.9594(19)	0.151	Rb3–O2	3.1407(18)	0.092
Rb1–O4 $(2x)^{**}$	3.389(2)	0.047	Rb3–O3**	3.355(2)	0.052
Rb1–O7 $(2x)^{**}$	3.446(2)	0.040	Rb3-O1**	3.4602(17)	0.039
Mean	2.92	1.00	Mean	3.01	1.10
Rb2–O4	2.7436(19)	0.270	In–O5 (2x)	2.1274(17)	0.544
Rb2–O7	2.858(2)	0.199	In–O1 (2x)	2.1730(16)	0.481
Rb206	3.0033(18)	0.134	In–O3 (2x)	2.1886(15)	0.461
Rb2O1	3.0236(18)	0.127	Mean	2.16	2.97
Rb2–O3	3.0362(19)	0.123	Mo1–O4	1.7275(18)	1.624
Rb2O1	3.1181(17)	0.098	Mo1–O2	1.7364(16)	1.586
Rb2–O5	3.2089(18)	0.077	Mo1–O3	1.7963(15)	1.349
Rb2–O4	3.220(2)	0.075	Mo1-O1	1.8011(16)	1.331
Mean	3.03	1.10	Mean	1.77	5.90
Rb308	2.7715(19)	0.251	Mo2-O8	1.7366(17)	1.587
Rb306	2.9119(17)	0.172	Mo2–O7	1.7474(17)	1.541
Rb307	2.9517(18)	0.154	Mo2-O6	1.7511(17)	1.524
Rb308	3.016(2)	0.130	Mo2–O5	1.8295(17)	1.235
Rb3-O2	3.0871(17)	0.107	Mean	1.77	5.89

Bond-valence sums (v.u.) for the oxygen atoms O1 to O8 are as follows: O1 = 2.07, O2 = 2.03, O3 = 1.98, O4 = 2.02, O5 = 1.86, O6 = 2.11, O7 = 1.94, O8 = 2.14

* Bond–valence calculations are based on parameters of Brese & O'Keeffe.²⁹

** Not used for calculation of mean distances and BVSs.

logy of the decorated chains in both compounds is identical, the decorating P1–centred tetrahedra in Ba₂Ca $(HPO_4)_2(H_2PO_4)_2$ are considerably tilted with respect to the chain direction, and the chain is somewhat corrugated (see Figure 6b).

In $Rb_5In(MOO_4)_4$ (Figure 6c) the chain is formed by a different octahedral-tetrahedral linkage scheme: Mo1–centred tetrahedra link the InO_6 octahedra alternatively in a horizontal and vertical plane, whereas the two Mo2–centred decorating tetrahedra are attached to the *cis* apices of the InO_6 octahedra. This scheme results in a slightly wavy character of the chain. The chain in $K_5 In(MoO_4)_4^{35}$ (Figure 6d) is related to that in $Rb_5 In(MoO_4)_4$, but considerably more distorted. The linkage of the InO_6 octahedra by Mo2– and Mo4–centred tetrahedra in a twisted sequence, and the *cis* decorating Mo1– and Mo3–centred tetrahedra result in a distinct zigzag-like character of the chain.

In the protonated arsenate compounds CsM^{3+} - $(H_{1.5}AsO_4)_2(H_2AsO_4)$ (M^{3+} = Ga, Cr), $CsAl(H_2AsO_4)_2(HAsO_4)$ and $K(H_2O)M^{3+}$ ($H_{1.5}AsO_4)_2(H_2AsO_4)$ (M^{3+} = Fe, Ga, In) described by Schwendtner and Kolitsch,^{36–38} all AsO₄ tetrahedra are involved in the linkage system forming the chain, i.e., each AsO₄ tetrahedron corner-links

Figure 6. Decorated kröhnkite-like octahedral-tetrahedral chains in a) $KSr_6Sc(SiO_4)_4$, b) $Ba_2Ca(HPO_4)_2(H_2PO_4)_2$, c) $Rb_5In(MOO_4)_4$, d) $K_5In(MOO_4)_4$, e) $CsM^{3+}(H_{1.5}AsO_4)_2(H_2AsO_4)$ ($M^{3+} = Ga, Cr$), f) $Cs-Al(H_2AsO_4)_2(HAsO_4)$, g) $K(H_2O)M^{3+}(H_{1.5}AsO_4)_2(H_2AsO_4)$ ($M^{3+} = Fe$, Ga, In).

two MO_6 octahedra (see Figure 6 e-g). The overall topology of the chains in these arsenates is identical. It is probable that this chain type will also be found in protonated phosphates.

4. Conclusions

The present work demonstrates that decorated kröhnkite-like chains are not only encountered among arsenates, phosphates and molybdates, but also in silicates, with $KSr_6Sc(SiO_4)_4$ being the first such example. A comparison of all presently known compounds containing decorated kröhnkite-like chains reveals, firstly, different systems of corner-linkage forming the chains, and, secondly, different roles of additional tetrahedra (some only play a decorating role, while others provide an additional corner-linkage along the chain direction).

5. Acknowledgement

We thank two anonymous referees for critical and constructive comments on the manuscript. This research was financially supported by the Austrian Science Foundation (FWF) (Grant P17623-N10).

6. References

- 1. B. Dahlman, Ark. Mineral. Geol. 1952, 1, 339-366.
- 2. M. Fleck, U. Kolitsch, B. Hertweck, Z. Kristallogr. 2002, 217, 435–443.
- 3. M. Fleck, U. Kolitsch, Z. Kristallogr. 2003, 218, 553-567.
- 4. U. Kolitsch, M. Fleck, Z. Kristallgr. 2005, 220, 31-41.
- 5. U. Kolitsch, M. Fleck, Eur. J. Mineral. 2006, 18, 471-482.
- 6. U. Kolitsch, Acta Crystallogr. 2006, C62, i35-i37.
- 7. M. Wierzbicka-Wieczorek, Syntheses, crystal structures and crystal chemistry of new mixed-framework silicates and a

new molybdate structure type. Ph.D. Thesis, Institute of Mineralogy and Crystallography, University of Vienna, **2007**, 186 pp.

- 8. M. Wierzbicka-Wieczorek, U. Kolitsch, E. Tillmanns, Z. *Kristallogr.* **2008** submitted.
- 9. U. Kolitsch, M. Wierzbicka-Wieczorek, E. Tillmanns *Can. Mineral.* **2008** (accepted).
- U. Kolitsch, M. Wierzbicka, E. Tillmanns, *An unusually narrow Si–O–Si angle in the new disilicate BaKYSi₂O₇*, in: DGK (Ed.), Annual Conference of the German Society for Crystallography, Freiburg, Germany, *Z. Kristallogr.* 2006, Suppl. 24, 137.
- U. Kolitsch, M. Wierzbicka, E. Tillmanns, *Acta Crystallogr*. 2006, *C62*, i97–i99.
- 12. U. Kolitsch, M. Wierzbicka, E. Tillmanns, *Monoclinic Ba*- $Y_2Si_3O_{10}$ and triclinic $SrY_2Si_3O_{10}$: flux growth and atomic arrangements of two new silicates containing finite Si_3O_{10} units, in: SCS and CCA (Eds.), 15th Annual Conference of Slovenian Crystallographic Society and Croatian Crystallographic Association, Jezersko, Slovenia, Book of Abstracts, **2006**, 22.
- 13. M. Wierzbicka-Wieczorek, U. Kolitsch, E. Tillmanns, *Can. Min.* **2008**, in prep.
- 14. M. Wierzbicka, U. Kolitsch, E. Tillmanns, *Flux growth and* crystal structure determination of new $M^{1+}-M^{2+}-M^{3+}$ di-, tri- and tetrasilicates ($M^{1+} = Na$, K; $M^{2+} = Sr$, Ba; $M^{3+} = Sc$, Y, Gd, Er, Yb), in: ICSSC-5 and PCCG-8 (Eds.), 5th International Conference on Solid State Crystals and 8th Polish Conference on Crystal Growth, Zakopane, Poland, Book of Abstracts, **2007**, 70–71.
- 15. M. Wierzbicka-Wieczorek, U. Kolitsch, E. Tillmanns, *Flux* growth and topology of novel mixed sorosilicates: Ba- $Y_4(Si_2O_7)(Si_3O_{10})$ and isotypic $SrREE_4(Si_2O_7)(Si_3O_{10})$ (*REE* = *Yb*, *Sc*), in: DGK (Ed.), 16th Annual Conference of the German Society for Crystallography, Abstract CD, DGK, Erlangen, Germany, **2008**, 2E–01.
- 16. M. Wierzbicka-Wieczorek, U. Kolitsch, E. Tillmanns, $Ba_2Gd_2Si_4O_{13}$: a rare example of a silicate with finite Si_4O_{13} chains. Acta Crystallogr. C **2008**, in prep.
- 17. M. Wierzbicka, U. Kolitsch, E. Tillmanns, *Flux synthesis* and crystal structure of the new mixed silicates Na_4Sr_2M ${}^{3+}_2(Si_2O_7)-(SiO_4)_2$ ($M^{3+} = Y$, In, Sc), in: SCS and CCA (Eds.), 16th Annual Conference of Slovenian Crystallographic Society and Croatian Crystallographic Association, Petrčane, Croatia, Book of Abstracts, **2007**, 37.

- 18. M. Wierzbicka, U. Kolitsch, E. Tillmanns, $Rb_5Fe(MoO_4)_4 a$ novel type with isolated $Fe_2Mo_8O_{32}$ clusters, in: DGK (Ed.), Annual Conference of the German Society for Crystallography, Freiburg, Germany, Z. Kristallogr. **2006**, Suppl. 24, 176.
- Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228–234.
- G. M. Sheldrick, SHELXS97 and SHELXL97. University of Göttingen, Germany, 1997.
- R. F. Klevtsova, L. A. Glinskaya, *Dokl. Akad. Nauk SSSR* 1976, 230, 1337–1340 (in Russian).
- Shape Software Atoms for Windows and Macintosh, Version 5.1. Shape Software, Kingsport, TN 37663, USA, 1999.
- 23. Yu. A. Pyatenko, T. A. Zhdanova, A. A. Voronkov, *Dokl. Akad. Nauk SSSR* **1979**, *248*, 868–871 (in Russian).
- 24. U. Kolitsch, E. Tillmanns, Eur. J. Min. 2004, 16, 143-149.
- 25. J. D. Napper, R. C. Layland, M. D. Smith, H.-C. zur Loye, J. Chem. Crystallogr. 2004, 34, 347–351.
- 26. L.-H. Wang, L. F. Schneemeyer, R. J. Cava, T. Siegrist, J. Solid State Chem. **1994**, 113, 211–214.
- W. H. Baur, in: M. O'Keeffe, A. Navrotsky, (Eds.), *Structure and bonding in crystals, Vol. II*, Academic Press, New York, 1981, 31–52.
- 28. R. X. Fischer, E. Tillmanns, *Acta Crystallogr.* **1988**, *C44*, 775–776.
- 29. N. E. Brese, M. O'Keeffe, Acta Crystallogr. **1991**, *B47*, 192–197.
- 30. I. D. Brown, J. Appl. Crystallogr. 1996, 29, 479-480.
- 31. B. I. Lazoryak, V. A. Efremov, Sov. Phys. Crystallogr. 1987, 32, 220–224.
- V. A. Morozov, B. I. Lazoryak, O. I. Lebedev, S. Amelinckx, G. Van Tendeloo, J. Solid State Chem. 2003, 176, 76–87.
- V. A. Efremov, V. K. Trunov, Yu. A. Velikodnyi, *Zh. Neorg. Khim.* 1971, *16*, 1052–1055 (in Russian).
- 34. M. Toumi, S. Chabchoub, L. Smiri-Dogguy, Y. Laligant, *Eur. J. Solid State Inorg. Chem.* **1997**, *34*, 1249–1257.
- O. V. Kudin, V. A. Efremov, V. K. Trunov, Yu. A Velikodnyi, *Zh. Neorg. Khim.* **1981**, *26*, 2734–2739.
- K. Schwendtner, U. Kolitsch, Acta Crystallogr. 2005, C61, i90–i93.
- 37. K. Schwendtner, U. Kolitsch, Acta Crystallogr. 2007, C63, i17–i20.
- K. Schwendtner, U. Kolitsch, Eur. J. Min. 2007, 19, 399– 409.

Povzetek

Z metodo rentgenske difrakcije sta bili pri sobni temperaturi določeni kristalni strukturi dveh novih spojin KSr₆Sc $(SiO_4)_4$ in Rb₅In(MoO₄)₄. Obe spojini sta bili sintetizirani iz fluksa pri študiju novih mikro in nanoporoznih alkalijskih-M³⁺ silikaktov. KSr₆Sc(SiO₄)₄ predstavlja nov strukturni tip in je to prvi silikat, ki vsebuje dekorativne kröhnkitu podobne oktaedrsko-tetraedrske verige. Spojina je ortorombska v Pnma, with a = 19.137(4), b = 11.197(2), c = 7.125(1) Å, V = 1526.7(5) Å³, Z = 8. Rb₅In(MoO₄)₄ kristalizira v P2/c with a = 11.391(2), b = 7.983(2), c = 11.100(2) Å, $\beta = 113.74(3)^\circ$, V = 924.0(3) Å³, Z = 2. Spojina je izotipična z Rb₅Er(MoO₄)₄. Narejena je bila tudi primerjava z ostalimi spojinami, ki vsebujejo kröhnkitu podobne verige npr. Ba₂Ca(HPO₄)₂(H₂PO₄)₂, CsM³⁺(H_{1.5}AsO₄)₂(H₂AsO₄) (M³⁺ = Ga, Cr), CsAl(H₂AsO₄)₂(HAsO₄), K(H₂O)M³⁺(H_{1.5}AsO₄)₂(H₂AsO₄) (M³⁺ = Fe, Ga, In) in K₅In(MoO₄)₄.